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Chapter 1

Introduction

The purpose of this document is to introduce the elementary concepts and to build a concrete
understanding of the stochastic theory of neutron transport to the motivated undergraduate student,
the Ph.D. engineer/physicist/mathematician, and the staff scientist or professor learning yet another
new skill. The authors understand that there are many learning types- from visual to analytical
to repetitive to word-based to analogy-based (and combinations thereof)- and so we have tasked
ourselves with providing as many representations as possible within to ensure every reader a fruitful
endeavor. This document is written as a set of chapters that continually build upon the previous
chapter. In this chapter, we provide the discussion, motivation, and background topics for the
remainder of the text.

1.1 Relevant Nuclear Physics
Nuclear physics itself is a wide and rich topic and we therefore focus on the relevant fundamental
concepts that we make use of in this document. We ignore spatial effects throughout the majority
of this document (except in the last chapter, and only as an approximation at that) to keep clear
the foundations that the field of stochastic neutronics is built upon. We are particularly interested
in systems that are composed of materials that produce neutrons and are affected by neutrons that
stream within them. Below, we discuss the types of interactions that a neutron may have with a
medium and how we quantify those interactions by use of cross sections. This is followed by an
introduction to a key element of stochasticity of a nuclear system: multiplicity distributions. We
then discuss the calculation of reaction rates, which are functions of the cross sections, as well as
the concept of spontaneous fission and source decay rates.

1.1.1 Neutron Interactions & Cross Sections
For the purposes of this work, we treat all neutrons as point particles, which is acceptable for higher
energy neutrons for which the neutron wavelength is small enough and comparable to the size of an
atom’s nucleus. We may also assume that a neutron travels in a straight line until it collides with
an atom because neutrons possess a neutral electric field and so they are unaffected by electric fields
of atoms.

Consider now a single neutron that is moving through a medium composed of a matrix or lattice
of atoms. Suppose the neutron is traveling directly towards a nucleus and therefore, from the point
of view of the neutron, the nucleus appears as a solid circle that it may or may not collide with. This
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(a) (b)

Figure 1.1: The microscopic cross sections of several isotopes for (a) capture and (b) induced
fission. Plots taken from [1], data comes from the Evaluated Nuclear Data Files (ENDF) Retrieval
and Plotting, Version 3.1. National Nuclear Data Center, New York, NY, October 2009.

‘circle’ or ‘target’ is of course a simplification of reality, but from this mental image we may define
the cross section of the target nucleus as being the probability that the neutron will collide with it.
More specifically in this context, we have defined the microscopic cross section, σ, which is measured
in units of area and the most commonly used unit of measurement is the barn, which is equivalent to
1b = 10−24cm2. Note that this is on the order of the cross sectional area of a representative nucleus
with a radius on the order of 10−12 cm2.

From this, we have defined the total microscopic cross section, σt, as being the probability
of simply colliding with the nucleus. There are several different mutually exclusive interactions
that may occur following a collision, namely parasitic absorption (interchangeably called capture),
scattering (elastic and inelastic), and induced fission which have respective cross sections σc, σs, and
σf . Each of these is a partial cross section and their sum equals the total cross section:

σt(E) =σc(E) + σs(E) + σf (E),

=σa(E) + σs(E)
(1.1)

where we have noted that the cross sections are functions of the incident neutron energy E and
we have defined σa(E) as the microscopic absorption cross section which accounts for the processes
that involve the incident neutron being absorbed into the nucleus. We will discuss the fission
cross section and the fission process in the next section, 1.1.2. Microscopic cross sections may
be derived from experimentation or from quantum mechanical theory, and their values may vary
substantially depending on the incoming neutron’s energy. The cross sections are also dependent
on the temperature of the medium because, as a material heats up, the nuclei gain kinetic energy
and vibrate with greater frequency and amplitude; thus, one expects the sharp peaks to widen over
neutron energy ranges and this is known as Doppler Broadening. Figure 1.1a shows the microscopic
capture cross section for several isotopes commonly found in nuclear reactors and Fig. 1.1b shows
the induced fission cross sections for the same isotopes. As we can see, the cross sections vary wildly
over several orders of magnitude in both the value of the cross section and the incident neutron
energy. The reason for the rapid variations and oscillations of σ for relatively small changes in
neutron energy is due to wave-mechanical effects of the neutron as it penetrates the complicated
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structure of the nucleus. There are plenty of sources for explaining this phenomena [2, 3], but such
a discussion is beyond our present needs.

Aside from revealing some interesting nuclear properties of an isotope, the microscopic cross
section may be used to determine the macroscopic cross section for interaction type x, Σx, where
x = {t, c, s, f} for the total, capture, scatter, and fission interactions. Noting that the microscopic
cross section was defined for a single neutron incident on a single nucleus, we are more often concerned
with a neutron traveling through a lattice of nuclei with density N atoms per volume1. From this,
we define the number density, N , of the medium which may be calculated as:

N(t) =
ρ(t)NA
M

(1.2)

where ρ(t) is the time-dependent density of the material [g/cm3], NA is Avogadro’s constant (=
6.022 · 10231/mol), and M is the molar mass of the atoms [g/mol]. From Eq. 1.2, we can define the
macroscopic cross section for interaction x as:

Σx(E, t) = N(t)σx(E) (1.3)

from which the total macroscopic cross section is defined as

Σt(E, t) = Σc(E, t) + Σs(E, t) + Σf (E, t)

=N(t)
[
σc(E) + σs(E) + σf (E)

]
.

(1.4)

The macroscopic cross section should be thought of as the probability of colliding per unit of length
travelled by the neutron resulting in interaction x. The above discussion assumes the medium is
composed of a single isotope, but it is possible to determine the number density of a mixture, which
can be found in [4, 5].

1.1.2 Fission & Multiplicity Distributions
As we briefly mentioned above, a neutron that collides with a nucleus may cause a fission (i.e.,
induce a fission) with probability σf . Figure 1.2 illustrates an induced fission event with the related
time scales (in seconds) that show at what point in the process certain particles emerge. As we
see, an induced fission initiates when a neutron collides with a nucleus, gets absorbed within the
nucleus and causes it to become excited and unstable. The excited unstable nucleus then deforms
and scissions into two fragment nuclei within 10−21 to 10−19 seconds2. These fission fragments
then promptly emit neutrons within 10−18 seconds. Shortly thereafter, the fission fragments emit
gamma rays to further de-excite (anywhere between 10−14 and 10−7 seconds) and some of these
fragments will much later (relatively speaking) further decay via beta decay3. Not shown in the
beta decay process are the additional particles that are typically emitted, such as gamma rays, beta
particles, neutrinos, and antineutrinos. We focus on the neutrons that are promptly emitted as they
are produced essentially simultaneously whence the excited nucleus splits. Additionally, the decay

1This leads into the real-world problem of analyzing many neutrons, i.e. a neutron flux, moving through many
lattice atoms. We will not use the concept of the flux in this document because we are interested in probabilistic
behavior of the population, whereas the flux is an average quantity.

2The nucleus does not split evenly into equal fission fragments but will instead result in one fragment being
considerably lighter than the other. Typically, the fission product atomic numbers are concentrated in the ranges
from about 80 to 105 and from about 130 to 150 in thermal reactors.

3Beta Minus Decay is the process of a neutron in the nucleus emitting an electron, called the beta particle, and
an antineutrino which transitions the neutron to a proton. Conversely, Beta Plus Decay is the emission of a positron
and neutrino which converts the proton to a neutron.
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Figure 1.2: Illustration of an induced fission event with relative time scales (seconds) of the
evolution of the process. Taken from www.fuw.edu and edited by P. O’Rourke.

(a) (b)

Figure 1.3: (a) Shows an example of a sustained fission chain and (b) shows several particle
multiplicity distributions for a Pu system. ((a) was taken from MikeRun under license CC BY-SA
4.0).
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of certain fission fragments will produce another neutron, called a delayed neutron which appear
between microseconds to seconds after the fission event. We will ignore effects of delayed neutrons
in this document and consider only the prompt neutrons.

There is another type of fission that occurs and it does so randomly and spontaneously. We
therefore refer to this process as spontaneous fission (SF) and it is the radioactive decay process of
an unstable nucleus randomly splitting into two fission fragments and emitting neutrons as well as
other particles. The SF process does not require a neutron for it to happen and therefore nothing
can induce it except for nuclear instability and time. We will treat the SF process as a source within
this work because it indiscriminately adds neutrons to the system.

In the event of either an induced fission or a spontaneous fission, neutrons are emitted which
may then go on to induce more fissions. This process is illustrated in Fig. 1.3a, where we see a
single neutron has the potential of starting many fission reactions within the system. This chain
of fission events is called a fission chain reaction and is the basis for the design of nuclear reactor
power plants for the production of electricity. One of our main focuses in this document is to model
and predict the behavior of fission chains from a probabilistic point of view.

An additional feature of the induced fission and spontaneous fission processes are the random
number of particles that may emerge from those events (this feature is hinted at in Fig. 1.3a where
we see some fission events result in 2 neutrons while others result in 3). We define qxν as being the
probability that ν particles are emitted following event type x, where x = {f, S} for induced fission
and spontaneous fission, respectively. The collection of these probabilities is called the multiplicity
probability distribution, or simply the multiplicity distribution. As an example, Fig. 1.3b shows the
neutron and photon multiplicity distributions for induced fission (IF) and spontaneous fission (SF)
for a 20 wt% 240Pu and 80 wt% 239Pu system [6]. We can see that the number of neutrons emerging
from a fission event may range from zero up to some max number, νxm, typically between 6 and 8.
Each of these emission numbers has the associated probability qxν and the distribution is normalized
as

νxm∑
ν=0

qxν = 1. (1.5)

In this document, we consider only the neutron multiplicity distribution, but show the photons to
help the reader to understand that this is a characteristic of any fission process and the particles
resulting thereof (another random outcome from a fission is the masses of the fission fragments, which
ultimately dictates the remaining decay chain and resulting particles). Typically, we deal with the
average number of neutrons that are emitted from fission event type x, νx, which is calculated as:

νx =

νxm∑
ν=0

νqxν . (1.6)

This is the quantity one uses when analyzing the neutron transport equation and/or the neutron
diffusion equation when induced fission is included.

We finish this section by discussing the concept of neutron multiplication due to the induced
fission process. As we now know, in certain materials a single neutron may induce a fission which will
bring forth an average of νf neutrons per fission. Those neutrons, the progeny of the first neutron,
will continue on and may induce other fissions. Each time a set of neutrons induces another fission
and creates new neutrons, a new generation of neutrons is born. We may quantify the behavior of
the neutron population over many generations using the multiplication factor, k, which is defined as

k = νf
Σf
Σa

, (1.7)
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where Σa = Σf + Σc is the macroscopic absorption cross section. If k < 1, the fission chain will
eventually extinguish and the system is considered subcritical. If k ≡ 1, the fission chain will
propagate forever and the system is exactly critical. For k > 1, the chain will grow unbounded and
the system is supercritical. We note that the ratio of the cross sections Σx/Σa is the probability
that, upon a neutron colliding with a nucleus, event x will occur and we write this as:

px =
Σx
Σa

. (1.8)

1.1.3 Reaction & Source Decay Rates
In the proceeding chapters, we must concern ourselves with the rates at which neutrons are inter-
acting with the medium and, if a source is present, we must know the rate at which that source is
spontaneously decaying and emitting neutrons into the system. These rates, referred to as reaction
rates for neutron interactions and simply the source strength, help to characterize how the system
will evolve in time and prove quite useful for that reason.

The primary interactions to consider are those that remove neutrons from or introduce neutrons
to the system at a given energy E; these mutually exclusive events are capture, scattering, induced
fission, and spontaneous fission (there is also the loss mechanism due to leakage which is a function
of the system’s geometry, but we will ignore that for now). The system may be characterized by the
reaction rates, λx(E, t), defined as the probability per neutron per unit energy per unit time that
the particular event x will occur, and a source strength, S(E, t), defined as the probability that a
source event will occur per unit energy per unit time. The reaction rates at a given time, t, may be
calculated using the macroscopic cross section for reaction x and the neutron speed, v(E), as

λx(E, t) = v(E)Σx(E, t), (1.9)

where we will use the subscripts x = {c, f} for capture and induced fission. We note that the
absorption reaction rate is the sum of the capture and induced fission rates and the total reaction
rate is then the absorption added with the scattering rate:

λa(E, t) = λc(E, t) + λf (E, t) (1.10a)

λt(E, t) = λa(E, t) + λs(E, t) (1.10b)

τ(E, t) =
1

λt(E, t)
, (1.10c)

where we have introduced τ(E, t) as the average lifetime of a neutron with energy E at time t. We
may also include a generic loss rate due to leakage, λ`(E, t), which could be contributed to λt(E, t)
by simply adding it.

We may also calculate the intrinsic source strength for a given system with mass m which may
be composed of any number of isotopes that may undergo radioactive decay using the formula

S(E, t) = m(t)NA
∑
i

psp,i(E)λiwi
Mi

, (1.11)

where NA is Avogadro’s Constant, psp,i is the probability that a radioactive decay of isotope i is a
spontaneous fission event and emits a neutron of energy E, λi is the radioactive decay constant, wi
is i’s weight fraction, and Mi is the molar mass.
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1.2 What are Master Equations?
Historically, a master equation is called as such4 because it acts as an umbrella equation within the
hierarchy of equations encountered in mathematical physics from which many properties of the model
may be derived- thus, the equation is ‘ruling’ over the subsequent equations. At its core, a master
equation is simply an equation whose solution is a probability distribution function (PDF) which
describes a discrete-state continuous-time Markov process5. This equation could be an ordinary
differential equation (ODE), partial differential equation (PDE), integro-differential equation (IDE),
and so on. In this document, we will be working with master equations that are ODEs and PDEs,
but in later volumes we will see master equations of the IDE variety. Master equations are used
in quantum mechanics, stochastic chemical kinetics, gene regulatory networks, disease propagation,
evolutionary game theory, social and economic processes, queuing processes, traffic jam modeling,
boson condensation, and many others [13]. We also note that the master equation counterpart for
which the solution is a probability density function (which is used for a continuous-state continuous-
time Markov process) is the Fokker-Planck equation. Let us now build up our understanding of the
nomenclature we will see throughout this document and how to interpret it.

We begin by asking the broad question we want to answer, “what is the probability that a system
initially in state m at time to is then in state n at a later time t?” The answer to this question
is symbolized by the quantity Pn|m(t|to) and should be read as, “the probability of being in state
n at time t conditioned on the system having been in state m at an earlier time to.” The “n|m”
symbolizes conditions, where the earlier conditions are always on the right and the resultant state
and time is on the left.

In a general sense, Pn|m(t|to) can be calculated by summing all the possible states the system
may occupy on its path from state m at to to state n at t. Since we are beginning in state m at to,
we need to consider the probability that the system will transition to state i at some time t′, where
t′ ∈ [to, t], and then multiply this quantity by the probability of transitioning from state i at t′ to
state n at t. This can be written mathematically as

Pn|m(t|to) =
∑
i

Pn|i(t|t′)Pi|m(t′|to). (1.12)

To reiterate, Eq. 1.12 defines the probability Pn|m(t|to) as being equivalent to the sum of all
probabilistic pathways the system may travel upon as it transitions from the initial state to the
final state. The states “i” are referred to as intermediary states later in this primer. In this current
general form, this equation is referred to as the Chapman-Kolmogorov Equation that describes a
discrete-state continuous-time Markov process [8, 11]. As a tip, we suggest reading each term on
the RHS starting from the most-right factor and moving left as this coincides with the chronology
of the events (i.e., read Pi|m(t′|to) first, then Pn|i(t|t′)).

From the Chapman-Kolmogorov equation 1.12, our first task will be to define the intermediary
state time t′. The two most common locations to define where t′ occurs within the problem’s
time domain are either immediately following the initial time or just before the final time. Figure
1.4 shows these two options for us, where we have explicitly defined t′ as a function of either the
initial/injection time or the final time as well as an arbitrarily small time interval ∆t. We assume

4The name “master equation” was originally coined by Nordsieck, Lamb, and Uhlenbeck in their study of the Furry
model of cosmic rain showers [13].

5A Markov process refers to the memorylessness of the particles such that the current state of the system is only a
direct result of the most recent state of the system. As an example, imagine a neutron with energy, E- that neutron
may have obtained E from scattering off a nucleus or may have emerged from fission with E. In either case, it is E
that dictates the possible next steps for the neutron rather than its process of origin.
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Flow of
Time

Injection Time
to

t′ = to + ∆t

t′ = t− ∆t

Final Time
t

Figure 1.4: Time variables used for the forward and backward formulation.

∆t is small enough that effectively only a single event may occur (as in, only a single state-transition
may occur). Selecting one definition of t′ over the other will result in different forms of the master
equation that we will become quite familiar with by the end of this primer. The two selection
methods are called the Forward Formulation (FF) for t′ near the final time and the Backward
Formulation (BF) for t′ near the beginning:{

Forward: t′ = t−∆t

Backward: t′ = to + ∆t.
(1.13)

From this, it is clear that the Chapman-Kolmogorov equation is essentially a probability balance
and, by selecting t′, we are conducting the probability balance in either the last collision interval in
the Forward Formulation or in the first collision interval in the Backward Formulation. Recall that
we are forcing ∆t to be arbitrarily small to the point that, if an event occurs that transitions the
system to a new state, no other event may conceivably occur. Thus, a collision interval should be
regarded as the amount of time that it takes for a collision to take place (which we have shown in
Fig. 1.2, is on the order of 10−20 s).

By selecting either the FF or BF, we must then determine the transitions that may occur in
the collision interval of choice. A transition from one state to another can be quantified by using
transfer probability rates or, as we have defined them, reaction rates λ from Sec. 1.1.3. Recalling
that λx is the probability per neutron per unit time that event x will occur, we may then determine
the transition probabilities of Eq. 1.12. Thus, to get a probability from the reaction rates we simply
multiply by the time interval ∆t, i.e. λx∆t = the probability of event x occurring per neutron in the
time span ∆t. Going back to a more general mathematical notation, we will write our reaction rates
as transfer rates: λj←i, meaning the probability per unit time that an event occurs which transfers
the system from state i to state j. We need to be cautious about the transfer rates because they
will appear differently depending on the FF versus BF. In the forward approach, we are taking t′
in the last collision interval and thus we need to consider transfer rates that take the system from
state i to state n. In the backward approach, we are taking t′ in the first collision interval and thus
need to consider transfers from state m to state i. This gives the Chapman-Kolmogorov equation a
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new form:

F: Pn|m(t|to) =
∑
i

λn←i∆tPi|m(t−∆t|to) (1.14a)

B: Pn|m(t|to) =
∑
i

Pn|i(t|to + ∆t)λi←m∆t. (1.14b)

Let us now read the RHS of each equation to better understand how the FF and BF changed our
view of the problem. It is important to keep in mind that the LHS did not change and thus the two
methods provide the same answer, we will see this proved many times throughout this primer. The
forward RHS is read as, “the probability of being in state i at t−∆t conditioned on being in state m
at to times the probability of then transferring from state i to state n in the time interval ∆t leading
to time t.” The backward RHS is read as, “the probability of transferring from the initial state m to
state i in the time interval [to, to + ∆t] times the probability of being in state n at t conditioned on
being in state i at to + ∆t.” Equations 1.14 are referred to as the Forward Chapman-Kolmogorov
equation and the Backward Chapman-Kolmogorov equation, respectively.

Before deriving the forward and backward master equations, there is one more transfer probability
that we must consider: the probability of self-transfer λn←n∆t. First, we note that the quantities
λn←i∆t are probabilities and are therefore normalized:∑

i

λn←i∆t = 1. (1.15)

From this, we may define the probability of self-transfer as

λn←n∆t = 1−
∑
i 6=n

λn←i∆t. (1.16)

The above relates to the FF, but the same holds for the BF for which one would write:

λm←m∆t = 1−
∑
i 6=m

λi←m∆t. (1.17)

In a physical setting, the self-transfer probability refers to the probability of no event occurring in
∆t. Knowledge of this scenario is important as it is connected to the probability that the system is
already in state n.

We have all the ingredients to derive the master equations and we start by separating the self-
transfer probabilities from the respective Chapman-Kolmogorov equations:

F: Pn|m(t|to) =
∑
i 6=n

λn←i∆tPi|m(t−∆t|to) + λn←n∆tPn|m(t−∆t|to) (1.18a)

B: Pn|m(t|to) =
∑
i 6=m

Pn|i(t|to + ∆t)λi←m∆t+ Pn|m(t|to + ∆t)λm←m∆t. (1.18b)

Now using Eqs. 1.16 and 1.17, we have:

F: Pn|m(t|to) =
∑
i6=n

λn←i∆tPi|m(t−∆t|to) +

[
1−

∑
i6=n

λn←i∆t

]
Pn|m(t−∆t|to) (1.19a)

B: Pn|m(t|to) =
∑
i 6=m

Pn|i(t|to + ∆t)λi←m∆t+ Pn|m(t|to + ∆t)

[
1−

∑
i 6=m

λi←m∆t

]
. (1.19b)
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We next rearrange the above equations to find:

F:
Pn|m(t|to)− Pn|m(t−∆t|to)

∆t
= − Pn|m(t−∆t|to)

∑
i6=n

λn←i +
∑
i 6=n

λn←iPi|m(t−∆t|to)

(1.20a)

B:
Pn|m(t|to)− Pn|m(t|to + ∆t)

∆t
= − Pn|m(t|to + ∆t)

∑
i 6=m

λi←m +
∑
i 6=m

Pn|i(t|to + ∆t)λi←m.

(1.20b)

Finally, we convert the above equations into differential equations, in fact they are classified as
differential-difference equations because the solutions are coupled via a discrete index. This conver-
sion is done by taking the limit as ∆t→ 0 and recalling the limit definition of a derivative to arrive
at the forward and backward master equations:

F:
dPn|m(t|to)

dt
= −Pn|m(t|to)

∑
i 6=n

λn←i +
∑
i 6=n

λn←iPi|m(t|to) (1.21a)

B: − dPn|m(t|to)
dto

= −Pn|m(t|to)
∑
i 6=m

λi←m +
∑
i6=m

Pn|i(t|to)λi←m. (1.21b)

There are several striking differences between these two master equations. First, we see that the
backward master equation (BME) has a negative time derivative which indicates that time is actually
reversed (which is somewhat non-intuitive, but we will see it makes sense in action later). Another
quirk of the BME is that the derivative is taken with respect to the initial time and not the final
time. We call the time that is being differentiated the operating time as it is the time that is variable.
In that sense, the BME has a “final” condition rather than a typical initial condition because the
final time is held constant. We will see that, unlike the BME, the forward master equation (FME)
is treated like a typical ODE with an initial condition that dictates the evolution of the probabilistic
state of the system. For that reason, it is cumbersome and unnecessary to continue to carry around
the conditional statements on the FME solution and we may simplify the notation slightly as:

F:
dPn(t)

dt
= −Pn(t)

∑
i 6=n

λn←i +
∑
i 6=n

λn←iPi(t). (1.22)

There will be a notational simplification for the BME as well (we will be able to drop the m, but
not to since it is the operating time), but we leave it as is for now. Such types of variables that do
not provide the necessary information about an equation are called nuisance variables [14].

From this demonstration, we have seen that the Chapman-Kolmogorov equation can be viewed
as a probability balance conducted either in the first or last collision interval. From this balance, we
were able to rearrange the equation with some simple algebraic manipulations and then convert the
equation into a linear first-order differential-difference equation known as a master equation. Solving
either forward or backward master equation will provide the same answer and, in the 0-D setting,
the choice of which to use is entirely up to the researcher’s preference. We will see in a later volume
that the BF proves superior when spatial, angular, etc. dependence are included (so it does not hurt
to learn it now). Given the model at hand, the master equation might be solved easily and outright,
or it might not have a solution at all. In this primer, we will apply a solution algorithm that is used
for the most complicated of master equations (think energy, space, angle dependence, and so on)
and we therefore show how to apply it to solve the simple master equations and to gain an intuition
of the implications/limits of the approximations we use. This solution algorithm is introduced next.
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Figure 1.5: The Master Equation Solution Algorithm (MESA).

1.3 The Master Equation Solution Algorithm
The process of analytically solving Master equations, both forward and backward, can be summarized
in a handful of straightforward mathematical steps. It is this algorithm that we wish to convey to
the reader so they are capable of deriving, solving, and analyzing their own master equations. Figure
1.5 illustrates the Master Equation Solution Algorithm (MESA) that we will be using throughout
every chapter in this primer. We believe it is most instructive to introduce this subject using the
relevant neutron transport language, as it is the subject of this work, but this algorithm may easily
be applied to all of the disciplines and general master equations mentioned in Sec. 1.2.

Focusing on Fig. 1.5, the left column concerns the process for obtaining exact or approximate
analytical solutions to the Master equation itself and we will refer to it as the Analytical MESA
(AMESA). The right column that splits at step 3 is used more commonly for obtaining the solution
using numerical methods and we will refer to it as the Numerical MESA (NMESA). The focus of
this primer is to utilize AMESA to obtain exact closed-form analytical solutions to the FME and
BME, and we will discuss the NMESA in the very last chapter to demonstrate its utility as it will
be used in later primer volumes.

For us, the analytical solution to the master equation, Pn|m(t|to), will be obtained via the
AMESA. For step 1, we conduct a probability balance either in the first collision interval or last
collision interval (note any of the progressive Chapman-Kolmogorov equations 1.12, 1.14, 1.18, 1.19).
The balance equation will define all the physical processes and their effects we want to include in the
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final solution6. In step 2, we then convert the balance equation to a master equation by rearranging
and taking the limit as the collision interval becomes instantaneous (recall Eqs. 1.20 and 1.21). Step
2 is as far as Sec. 1.2 got us, and we state the remaining steps below and summarize thereafter.

• Outline of AMESA:

1. Conduct probability balance,

2. convert to a master equation (ME),

3. transform ME to a PDE using probability generating function (PGF), G(z, t|to),
4. solve PGF PDE with Method of Characteristics (MoC),

5. invert G(z, t|to) solution to obtain number distribution, Pn|m(t|to).

For step 3, we are tasked with transforming the master equation to a partial differential equation
(PDE) using the probability generating function (PGF), symbolized as G(z, t|to). The PGF is
treated as a discrete transform (if you have dealt with Laplace transforms or Fourier transforms,
those are continuous transforms) that transforms the master equation from discrete n space to a
continuous transform space with transform variable z. We will not explicitly define the PGF here,
but it suffices to mention that the PGF effectively consolidates the infinite number of coupled ODEs
of the master equation (there are an infinite number because n = 0, 1, 2, . . . ,∞) into a single PDE.
This makes the problem a little more tractable, with the trade-off being the reduction to a single
equation but that equation is a PDE.

Step 4 is typically where the bulk of the work is done. The PGF PDE, in the 0-D setting, turns
out to be linear hyperbolic PDE which can be solved (or partially solved) using the Method of
Characteristics (MoC). We will become familiar with the MoC, but the gist is to convert the PDE
to a system of ODEs which can be solved to find the full solution. Once we have the full solution,
G(z, t|to), we then convert back from z space to n space in step 5. In performing all these steps, we
should emerge with an analytical solution!

It is true that many, if not most, master equations will not have a closed-form analytical solution,
but there are other options one has in elucidating vital information about the probabilistic behavior
of the system under study. In particular, we may use the additional branch of the MESA of Fig. 1.5,
the NMESA, to obtain equations for the moments of the distribution function which are useful in
their own right, but can also be used to fit distributions to find approximate, if not exact, solutions
to the master equation. The outline of NMESA is as follows:

• Outline of NMESA:

1. Conduct probability balance,

2. convert to a master equation,

3. transform using PGF,

4′. derive equations for the moments,

5′. solve the moment equations (either analytically or numerically),

6′. and fit a distribution using the moments.
6Often times, approximations will need to be made or certain physical effects will need to be ignored in order to

get a final solution, we will see this several times in this work. Case-in-point, this work ignores spatial effects entirely.
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There is a convenient identity that we may apply to the PGF to obtain the moments of the dis-
tribution we seek (e.g., the mean, variance, skewness, and so on), which step 4′ refers to. We will
see this identity used in practice in the final chapter of this primer. These moment equations are
typically coupled ODEs that can sometimes be solved analytically, but are more likely to be solved
numerically. As a sneak-peak, we will see that the ODE for the first moment is the well-known point
kinetics equations (recall, the master equation is ruling over the lower-information equations!) Upon
solving for the moments in step 5′, we then need to assume a form of the distribution for which we
may then use the moments to construct the distribution. The moments themselves provide useful
information about the profile and characteristics of the distribution and the fitted distribution itself
(which is more than likely an approximate solution) provides the desired quantity we seek.

Although we did not mathematically define some of the quantities we have discussed in this
section (e.g., the PGF, moment identities), we hope to have conveyed the principle motivations for
using the MESA and when and how to use the AMESA or the NMESA. We will apply this algorithm
every time we encounter a master equation in this primer.
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Chapter 2

Radioactive Decay Model

In this chapter, we begin our journey into formulating, solving, and utilizing Master equations
to better understand nuclear phenomena. We shall begin with a simple radioactive decay model
to utilize the formal mathematical process outlined in Chapter 1 Sec. 1.3. We commence the
expedition by introducing what is known as the Forward Master Equation (FME) Formulation in
Sec. 2.2 followed by the Backward Master Equation (BME) Formulation in Sec. 2.3. The primary
difference between the two formulations is in how one conducts the probability balance, but it is
important to note that the resulting solutions (the number distributions) are the same and it is
therefore the scientist’s preference as to which formulation they use in the 0-D setting.1 In Sec.
2.1, we introduce the concepts and assumptions made that apply to both the forward and backward
Master equation formulations to reduce redundancy. In both Secs. 2.2 and 2.3, we go through the
step-by-step process for formulating and solving Master equations that was outlined in Sec. 1.3.

2.1 The Model
Suppose we are observing a system with a neutron source that constantly, randomly, and sponta-
neously decays. Following is a list containing the primary assumptions we use in the forward and
backward master equation formulations:

• the system is large enough that we do not need to take spatial effects into account,

• the source is uniformly distributed throughout the system and we quantify the source magni-
tude, S, using Eq. 1.11 (S is defined as “the probability of a source event occurring per unit
time” and thus S is a probability density function),

• after a source event occurs, a single neutron is emitted traveling with speed v,

• the medium is neutron-transparent, i.e., there are no neutron interactions and thus a neutron
simply travels indefinitely once it appears following a source event,

• that there are 0 neutrons within the system for times before t = to.
1We will see in a later volume that the backward formulation is indeed the superior of the two formulations when

we account for space, energy, and angular dependence.
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SE, 1 n0 n − 1

n

No SE, 0 n0s n

Flow of
Time

t− ∆t t
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Figure 2.1: Mutually exclusive events that may occur in time interval If with their associated
states, mi, for a singlet-emitting source in a neutron-transparent medium. SE = Source Event.
Either a SE occurs in If , producing 1 n0, or no SE occurs and there must already be n n0s at the
beginning of If .

2.2 Forward Formulation
The forward formulation is outlined below, following the step-by-step rules of the master equation
solution algorithm described in Sec. 1.3.

2.2.1 Probability Balance & Master Equation
We begin by defining the probabilistic quantity we wish to obtain:

Pn(t) = the probability of there existing n neutrons within the system at time t due

to the introduction of a source of strength S at an earlier time t = to.2
(2.1)

To determine Pn(t), we use knowledge of the possible states the system could be occupying a short
time before t given by t−∆t. Thus we will conduct a probability balance over the time domain:

If = [t−∆t, t], (2.2)

where the subscript f refers to this being the forward time interval (as opposed to the backward time
interval we will see in Sec. 2.3). We assume ∆t is sufficiently small enough that only a single source

2Throughout this chapter, one could equivalently interpret n as the total number of source events that have occurred
or as the total neutron population. Interpretation of n as the total number of source events gives rise to the namesake
of this chapter. However, because we wish to convey the formulation process in terms of neutron populations within
this primer, we will be referring to n as the total neutron population in this chapter. This ambiguity of n is lost once
we allow for neutron interactions, or if we allow for more than one neutron to be emitted per source event.
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event may reasonably occur within it. In constructing the probability balance using the forward
formulation, let us first state the possible events that may occur within the short time interval If :

1. No source event occurs

2. A source event occurs, producing 1 neutron.

Only these two events may occur because we are not allowing for neutron interactions, in later
chapter this list will grow. To further illustrate the events that may occur leading up to time t, we
provide an event tree in Fig. 2.1, where SE stands for source event. In the figure, we see the event
that may occur in the far-left bubbles with the resultant number of neutrons (symbolized by n0,
in-line with standard model notation) that emerge, followed by the intermediary state mi- the ith
state that is event-connected to state n- which we use to aid in the forthcoming probability balance.
Again, this event tree will grow as more physics is incorporated in later chapters. Using the list
above, we may write the probability balance in words as follows:

Pn(t) =

(
Probability of no source
event occurring in If

)
×
(

Probability of being in
state n at time t−∆t

)

+

(
Probability of 1 source
event occurring in If

)
×

 Probability of being in a
population state that feeds
into state n at time t−∆t

 (2.3)

Notice how each event from the above list is multiplied by a connected (dependent) probabilistic
state. These connected states have already been defined for us with Eq. 2.1 where we need only
change the index and time argument to fix the description. We must then simply determine the
probability of a source event occurring. Recall the source, S, should be thought of as “the probability
of a source event occurring per unit time”, and thus we may define the probability of a source event
occurring in the time interval ∆t as:(

Probability of 1 source
event occurring in If

)
= S∆t. (2.4)

From Eq. 2.4 and keeping in mind that ∆t is sufficiently small, we may utilize the conservation of
probability to determine: (

Probability of no source
event occurring in If

)
= 1− S∆t. (2.5)

Now let us address the connected state probabilities of Eq. 2.3. The first one is the “probability of
being in state n at time t − ∆t”, and by comparing that statement to Eq. 2.1, we find that that
is equivalent to the quantity Pn(t − ∆t). The second connected state requires additional thought
as to what the index (i.e., the connected state) actually is. Since every source event produces one
and only one neutron, we require there to be n − 1 neutrons at time t − ∆t in order for there to
be n neutrons at time t due to a source event occurring within If . Thus, the second connected
probability statement, the “probability of being in a population state that feeds into state n at time
t−∆t”, equates to Pn−1(t−∆t). Assembling these connected states with Eqs. 2.4 and 2.5, we may
write down the probability balance for the radioactive decay process:

Pn(t) = (1− S∆t)Pn(t−∆t) + S∆tPn−1(t−∆t). (2.6)
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Given this probability balance, we may next rearrange by subtracting by Pn(t −∆t) and dividing
by ∆t to find:

Pn(t)− Pn(t−∆t)

∆t
= −SPn(t−∆t) + SPn−1(t−∆t). (2.7)

If we next take the limit as ∆t→ 0, the left-hand side of Eq. 2.7 is simply the limit definition of a
derivative with respect to t. Thus, by performing said limit, we arrive at a linear first-order ordinary
differential-difference equation satisfied by Pn(t):

dPn(t)

dt
= −SPn(t) + SPn−1(t), n = 0, 1, 2, . . . ,∞. (2.8)

Recall from the assumptions of Sec. 2.1, we assume there are no neutrons in the system at time
t = to, this provides an initial condition:

Pn(t = to) = δn,0 =

{
1 if n = 0

0 if n = 1, 2, 3, . . .
(2.9)

where δi,j is the Kronecker delta function.
Equation 2.8 is categorized as the differential form of the Chapman-Kolmogorov equation or more

commonly referred to as the Forward Master Equation (FME) for the radioactive decay process. This
FME is downward coupled (i.e., is a function of the lower-state probability Pn−1(t)) and can therefore
be solved for one probability at a time starting with n = 0 using the integrating factor method. As it
turns out, this is a very special case of a more general class of FMEs which cannot be solved in such a
straightforward manner. It is for this reason that we instead employ the Master equation algorithm
outlined in Sec. 1.3 to initially witness the machinery of the algorithm in this simple setting. The
next step in the solution process is to define and apply the probability generating function onto the
FME, shown in the next section.

2.2.2 Equation for the Probability Generating Function
In this section, we employ a transformation method on the FME which effectively consolidates the
infinite number of differential equations into a single equation for the transform function. The
transform we use is called the probability generating function (PGF). The PGF is an attractive
transform because it is essentially a power series representation of the PDF, which has a well-
developed theory established for non-negative coefficients.

Proceeding, we define the PGF as

G(z, t) =

∞∑
n=0

znPn(t), (2.10)

where z is the PGF transform variable and we restrict it to the domain: {z ∈ R|0 ≤ z ≤ 1}. Thus,
by multiplying Eq. 2.8 by zn and summing over all n, we have:

∞∑
n=0

zn
dPn(t)

dt
= −S

∞∑
n=0

znPn(t) + S

∞∑
n=0

znPn−1(t). (2.11)

Next, we will work through each term followed by a transforming of the initial condition.
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Starting with the left-hand side of Eq. 2.11, we may perform the following manipulations:

∞∑
n=0

zn
dPn(t)

dt
=
∂

∂t

∞∑
n=0

znPn(t)

=
∂G(z, t)

∂t
,

(2.12)

where going from the first to the second line in the above, we simply used the definition of the PGF
and we use a partial derivative because we have an additional independent variable, z. This same
comparison is made for the first term on the right-hand side and we need only consider the last
term. Let us define the new index m = n− 1, which provides n = m+ 1. When n = 0, m = −1 and
when n =∞, m =∞. The last term may then be written as:

∞∑
n=0

znPn−1(t) =

∞∑
m=−1

zm+1Pm(t)

= z

∞∑
m=0

zmPm(t)

= zG(z, t),

(2.13)

where we note that Pm=−1 is not a real quantity (how can we have negative populations?) and we
simply start the new sum at m = 0. Next, the initial condition is found by recalling the Kronecker
delta, δi,j , is 0 for all values of i except when i = j, which it then equals 1. Thus, we have:

∞∑
n=0

znPn(to) =

∞∑
n=0

znδn,0

= z0

G(z, to) = 1.

(2.14)

Assembling the terms from Eqs. 2.12 and 2.13, we find a linear first-order partial differential equation
(PDE) satisfied by the PGF:

∂G(z, t)

∂t
= S(z − 1)G(z, t) (2.15)

with the initial condition
G(z, to) = 1. (2.16)

We have gone from a system of ordinary differential-difference equations with an infinite number of
equations, Eq. 2.8, to a single two-variable partial differential equation. The trade-off being that we
no longer have to deal with an infinite set, but now we have to solve a PDE. In the next section, we
demonstrate the solution method often employed when solving the PGF PDE.

2.2.3 Solution to the PGF PDE
We now task ourselves with solving the PGF PDE for the radioactive decay process given by Eq.
2.15. The PGF PDE is a linear PDE that is separable and can be solved using the Separation
of Variables technique. As was mentioned near the end of Sec. 2.2.1, we choose to follow the
methodology that will be employed for the more complicated equations we will see in later chapters
of this primer. Instead of using separation of variables, we will solve Eq. 2.15 using the Method of
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Characteristics (MoC) to show the reader how that method is employed and to give the reader an
understanding of the Master equation solution algorithm in this simple setting.

Let us take the total derivative of G(z(t), t) with respect to t:

dG

dt
=
∂G

∂t
+
∂G

∂z

dz

dt
. (2.17)

If we now compare Eq. 2.17 with Eq. 2.15, we may infer two ordinary differential equations:

dz

dt
= 0 (2.18a)

dG

dt
=S(z − 1)G. (2.18b)

Equation 2.18a informs us that z is a constant and not a function of t. Equation 2.18b is a separable
ODE and can be solved by cross-multiplying and integrating to find:∫ G(z,t)

G(z,to)

dG′

G′
= S(z − 1)

∫ t

to

dt′. (2.19)

Upon evaluating the integrals, we find

ln

(
G(z, t)

G(z, to)

)
= S(z − 1)(t− to). (2.20)

Noting the initial condition and solving for G(z, t) gives us a solution to the PGF PDE:

G(z, t) = eS(z−1)(t−to). (2.21)

The next step will be to find the number distribution using this solution, shown in the next section.

2.2.4 Inversion of the PGF
Now that we have a solution to the PGF PDE, Eq. 2.15, given by Eq. 2.47, we need to determine
the neutron number distribution, Pn(t). This can be done by recalling that, when we introduced G
in Sec. 2.2.2, we referred to it as a power series representation of the PDF and thus we should be
able to extract the PDF by expanding G into a power series.

The solution we have obtained for G is neatly contained in the exponential function, which has
a well-known convergent power series given by:

ex =

∞∑
k=0

xk

k!
. (2.22)

Let us then expand G = e−S(t−to)eS(t−to)z in a Taylor series about z = 0 and write the first few
terms:

G(z, t) = e−S(t−to)
∞∑
n=0

zn(S
(
t− to)

)n
n!

= e−S(t−to)

[
1 + zS(t− to) + z2

(
S(t− to)

)2
2!

+ z3

(
S(t− to)

)3
3!

+ . . .

]
.

(2.23)
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Figure 2.2: Mutually exclusive events that may occur in time interval Ib with their associated
states, mi, that must occur in time interval Icb for a singlet-emitting source in a neutron-transparent
medium. SE = Source Event. Note the ‘zig-zags’ indicate an arbitrary passage of time. If a SE
occurs in Ib, producing 1 n0, then subsequent SEs occurring in Icb must produce n− 1 n0s. If no SE
occurs in Ib, then subsequent SEs that occur in Icb must result in n n0s.

By now comparing Eq. 2.23 with the original definition of G:

G(z, t) =

∞∑
n=0

znPn(t)

=P0(t) + zP1(t) + z2P2(t) + z3P3(t) + . . . ,

(2.24)

we may determine the neutron number distribution by inspection:

Pn(t) =

(
S(t− to)

)n
n!

e−S(t−to), (2.25)

which is the Poisson distribution with rate parameter S(t − to). It is known that the radioactive
decay process obeys Poisson statistics over a given time counting interval [41] and, as such this result
is expected.

2.3 Backward Formulation
We now present the backward Master equation formulation for the radioactive decay model following
the steps outlined in Sec. 1.3.
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2.3.1 Probability Balance & Master Equation
The zeroth step of the backward approach requires defining the probability we wish to know:

Θn(t|to) = the probability of there existing n neutrons within the system at time t due
to the introduction of a source of strength S at an earlier time to.

(2.26)

Historically, the Θ symbol is used to define the source-related probability in the BME while P is
used when we consider single neutron fission chains without a source present. We will see in later
chapters why the backward approach requires a different symbol for the single chain and source
probabilities. We use notation used for conditional probabilities to define Θn, thus one could replace
‘due to the’ in Eq. 2.26 with ‘conditioned on the’.

We define the time intervals of interest for the upcoming probability balance:

Ib = [to, to + ∆to] (2.27a)

Icb = [to + ∆to, t] (2.27b)

where we see that the entire time interval, from introduction of the source at to to observation of the
system at t, is given by Ib+ Icb . Also, we use the superscript c to denote the complement. With this,
we must change our thinking a little bit from how we derived a probability balance in the forward
approach. The first difference is that we are conducting a balance in the first collision interval, which
is to say that we are starting from the very beginning as opposed to the forward approach which has
the balance conducted at the very end of the total time interval. We will see that the approaches,
though different, give the same answers. The list of mutually exclusive events that occur in the first
collision interval, Ib, are the same as before:

1. No source event occurs

2. A source event occurs, producing 1 neutron.

Here is where we need to think different from the forward approach. The first collision interval, Ib,
is quite small because ∆to is very small while the difference in time between to + ∆to and t (i.e. Icb )
is arbitrarily large. Thus, there could be additional source events that may occur in the remaining
time Icb and we will need to include that possibility in our probability balance. To further illustrate
this, Fig. 2.2 shows the events and how they may occur over the total time interval, where we note
that the zig-zigs mean an arbitrary passage of time and SE stands for source event. In this figure,
we see the list of events that may occur in Ib, followed by a passage of time in Icb where an arbitrary
number of source events occurs and produces the necessary remaining neutrons needed to eventually
arrive at n neutrons at t. These necessary number of neutrons are then the connected states to n,
which are defined by the difference between n and the number of neutrons produced in Ib.

With this, we may define a probability balance in words:

Θn(t|to) =

(
Probability of no source
event occurring in Ib

)
×
(

Probability of subsequent source events
occurring in Icb resulting in n neutrons at t

)
+

(
Probability of 1 source event occurring

in Ib resulting in 1 neutron at t

)
×
(

Probability of subsequent source events
occurring in Icb resulting in n− 1 neutrons at t

)
.

(2.28)

Just as before, we can easily define the probability of a source event occurring in the short time ∆to
by recalling that the source, S, is defined as ‘the probability of a source event occurring per unit
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time’, which results in the following:(
Probability of 1 source event occurring

in Ib resulting in 1 neutron at t

)
= S∆to (2.29)

In truth, the time interval we multiply S by is (to + ∆to − to) as that is the width of Ib, but
obviously the to’s cancel. Next, we may define the complement of Eq. 2.29 using the conservation
of probability to find: (

Probability of no source
event occurring in Ib

)
= 1− S∆to (2.30)

Next, we need not consider explicit, singular events that may occur in Icb to write the subsequent
probabilities. Let us first consider the ‘probability of subsequent source events occurring in Icb
resulting in n neutrons at t,’ by changing the wording to the ‘probability of there being n neutrons
at time t due to the introduction of a source at time to + ∆to.’ We may make this equivalence
because each source event is independent of all others. Similarly, let us alter the ‘probability of
subsequent source events occurring in Icb resulting in n− 1 neutrons at t’ to the ‘probability of there
being n− 1 neutrons at time t due to the introduction of a source at time to + ∆to.’ Now by closely
comparing the definition given by Eq. 2.26 with these re-wordings of the events that may occur in
Icb , we find: (

Probability of subsequent source events
occurring in Icb resulting in n neutrons at t

)
= Θn(t|to + ∆to) (2.31a)(

Probability of subsequent source events
occurring in Icb resulting in n− 1 neutrons at t

)
= Θn−1(t|to + ∆to). (2.31b)

Assembling these together, we obtain the first collision probability balance for a neutron source for
a neutron-transparent medium:

Θn(t|to) = (1− S∆to)Θn(t|to + ∆to) + S∆toΘn−1(t|to + ∆to). (2.32)

Next, we divide by ∆to and subtract Θn(t|to + ∆to) to find:

−Θn(t|to + ∆to)−Θn(t|to)
∆to

= −SΘn(t|to + ∆to) + SΘn−1(t|to + ∆to). (2.33)

On the left-hand side, we have placed the Θn(t|to + ∆to) in front of the Θn(t|to) to make the next
step easier. If we now evaluate the limit as ∆to → 0, the LHS becomes the derivative of Θn(t|to)
with respect to to, and we thus have:

−∂Θn(t|to)
∂to

= −SΘn(t|to) + SΘn−1(t|to), (2.34)

which is the backward Master equation for the neutron number distribution in the presence of a
radioactive source in a neutron-transparent medium. A striking difference between the BME and
the FME given by Eq. 2.8 is the need to keep track of two time quantities: to and t. This is because
to is the operational time variable (i.e., we are taking a derivative with respect to to, not t).

Finally, we need a terminal condition in order to solve this equation. Recall that we are assuming
there are 0 neutrons in the system before the introduction of the source at to. Typically, we write
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the ‘final’ condition as a limit to signify that we are ‘bringing’ the source introduction time up to
the present time of observation, t. Thus, the final condition is:

lim
to→t

Θn(t|to) = δn,0 =

{
1 if n = 0

0 if n = 1, 2, 3, . . .
(2.35)

where δi,j is the Kronecker delta function.
Equation 2.34 is the backward Master equation for the model under consideration. We note that

the operational variable is the initial time and not the final time- a stark difference from the forward
Master equation. The equation is an adjoint linear partial-differential-difference equation that is
downward coupled and can therefore be solved. It is considered adjoint because the time derivative
has a negative sign appended to it, and we will therefore need to integrate backwards in time (we
will see this in action later)3.

We note that, same as the forward approach, this equation may be solved by solving the n = 0
equation and moving on to n = 1, supplementing the Θ0 solution, solving that equation and so
on. We choose to present an alternative, seemingly more cumbersome, method in this setting to
introduce the new-to-stochastic neutronics reader how we typically solve Master equations that are
more complex than the one we just derived. In the next section, we transform the BME into a
PDE for the probability generating function- an equation that is then solved via the Method of
Characteristics.

2.3.2 Equation for the Probability Generating Function
The probability generating function (PGF) is defined as:

H(z, t|to) =

∞∑
n=0

znΘn(t|to), (2.36)

where again we use a different notation for the backward approach. The transform variable, z, is a
real number with domain: z ∈ [0, 1], which ensures absolute convergence.

We may transform the BME given by Eq. 2.34 by multiplying the equation by zn and summing
over all n to find:

−
∞∑
n=0

zn
∂Θn(t|to)

∂to
= −S

∞∑
n=0

znΘn(t|to) + S

∞∑
n=0

znΘn−1(t|to). (2.37)

Note here that this effectively consolidates the infinite number of PDEs for Θn into a single equation.
Let us now consider each term to write the above in terms of H. First, the derivative may be
manipulated in the following manner:

∞∑
n=0

zn
∂Θn(t|to)

∂to
=

∂

∂to

∞∑
n=0

znΘn(t|to)

=
∂H(z, t|to)

∂to
.

(2.38)

3For an in-depth discussion on the concept and applications of the adjoint in nuclear reactor theory, we recommend
Lewins [38]
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Next, the first term on the RHS is clearly −SH and the second term requires a little more work. If
we define a new index: m = n− 1, then n = m+ 1 and the sum limits are m = −1 to m =∞. The
following manipulations may be performed:

∞∑
n=0

znΘn−1(t|to) =

∞∑
m=−1

zm+1Θm(t|to)

= z

∞∑
m=0

zmΘm(t|to)

= zH(z, t|to),

(2.39)

where we note that Θm=−1 = 0 because a negative population number is non-physical. Finally, the
final condition is transformed as follows:

lim
to→t

∞∑
n=0

znΘn(t|to) =

∞∑
n=0

znδn,0

= z0

lim
to→t

H(z, t|to) = 1.

(2.40)

Assembling the transformed quantities, we obtain a PDE for the PGF:

−∂H(z, t|to)
∂to

= S(z − 1)H(z, t|to) (2.41)

with the final condition
lim
to→t

H(z, t|to) = 1. (2.42)

This equation is easily solved via separation of variables and then integration backwards in time.
As we did for the forward case, we opt to show an alternative solution method via the Method of
Characteristics. We do this because PGF equations in later chapters are solved via the MoC and not
by the separation of variables method and thus it proves instructive for the reader still unfamiliar
with the MoC.

2.3.3 Solution to the PGF PDE
The PGF PDE may be solved using the MoC. The basic idea is to write the PDE as a system
of ODEs, which are then solved and a solution is assembled. To find the system of ODEs, let us
consider the total derivative of H:

dH

dto
=
∂H

∂to
+
∂H

∂z

dz

dto
. (2.43)

Comparing this equation to the BME given by Eq. 2.41, we may infer the system of ODEs as:

dz

dto
= 0 (2.44a)

dH

dto
=S(z − 1)H. (2.44b)
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These are often referred to as the characteristic equations. Equation 2.44a shows us that z is not
a function of time and may therefore be treated as a constant with regard to the time integrals
involved in solving Eq. 2.44b. On that note, Eq. 2.44b is a separable ODE that may be solved with
the separation of variables method and integrating backwards in time to find:

−
∫ H(z,t|to)

H(z,t|t)

dH ′

H ′
= S(z − 1)

∫ to

t

dt′o. (2.45)

Evaluating the integrals yields

− ln

(
H(z, t|to)
H(z, t|t)

)
= S(z − 1)(to − t). (2.46)

Then by solving for H(z, t|to), we find the desired solution to the BME:

H(z, t|to) = eS(z−1)(t−to). (2.47)

The next step will be to find the number distribution using this solution, shown in the next section.
Note the resemblance between this solution and that of the forward approach given by Eq. 2.47
(G(z, t) = eS(z−1)(t−to)). This comes as no surprise since both the backward and forward approaches
give the same solutions, the only difference being the time variable that is used.

2.3.4 Inversion of the PGF
As we did in the forward approach, we need to invert the expression for H(z, t|to) to extract the
number distribution Θn(t|to). This can be done by expanding H in a Taylor series about z = 0.
Note that z appears in the exponential function and we therefore need to expand this function,
which has the Taylor series:

ex =

∞∑
k=0

xk

k!
. (2.48)

Then by slightly rewriting H, we then expand H = e−S(t−to)eS(t−to)z in a Taylor series about z = 0
whose first few terms are:

H(z, t|to) = e−S(t−to)
∞∑
n=0

zn(S(t− to))n
n!

= e−S(t−to)

[
1 + zS(t− to) + z2 (S(t− to))2

2!
+ z3 (S(t− to))3

3!
+ . . .

]
.

(2.49)

By now comparing Eq. 2.49 with the original definition of H:

H(z, t|to) =

∞∑
n=0

znΘn(t|to)

= Θ0(t|to) + zΘ1(t|to) + z2Θ2(t|to) + z3Θ3(t|to) + . . . ,

(2.50)

we may determine the neutron number distribution by inspection:

Θn(t|to) =
(S(t− to))n

n!
e−S(t−to). (2.51)

This gives the expected solution as a Poisson distribution (for reasons explained in Sec. 2.2.4), which
is no different from the solution obtained in the forward approach.
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Figure 2.3: Poisson distributions for varying source strengths.

2.4 Example & Discussion
We now consider an example system with a source and no neutron interactions. Figure 2.3 shows Eq.
2.25 (or 2.51) plotted for t = 1 s, to = 0 s, and several different source strengths. Thus, because the
time difference is the same for each case (t− to = 1 s), this figure demonstrates the effects of source
strength on the total number of source events that have occurred up to that point in time (or total
number of neutrons in the system). For the weakest source of S = 1s−1, the probability of there
being no source events up to that time is the greatest than the others. This is consistent with the
definition of S being the probability per unit time that a source event occurs and therefore the lesser
the magnitude, the less likely an event will occur. As the source strength is increased, the bulk of
the distribution increases as well, as expected. We will see this behavior for all number distributions
with a source present. On a final note, we could also keep the source strength constant (i.e., set it
equal to S = So for all the cases) and then change the time t − to to 1, 5, 10, and 25 seconds and
the plot will look identical to Fig. 2.3. This would tell us that, for a given source strength, as time
progresses the total number of source events that occur up to that point will always be increasing
and will be Poisson distributed.
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Chapter 3

Binary Fission Model, No Capture,
with a Source

In this chapter, we build upon the concepts we introduced in the previous chapter by considering
certain neutron effects within the model. Section 3.1 covers the aspects of the model we are now
considering. Section 3.2 demonstrates the MESA for the Forward Formulation while Sec. 3.3 shows
how to apply the MESA for the Backward Formulation. As we will see, the algorithm is essentially
identical to the last chapter, but will become more mathematically involved due to the additional
physics we account for.

3.1 The Model
The system is the same as before, but we now allow neutrons to collide with the nuclei of the system
and, upon colliding, induce fission events. We summarize the model below:

• instantly after a fission event occurs, we allow for exactly two neutrons to emerge and we call
this the Binary Fission Model (BFM),

• neutrons emitted from induced fission travel with speed v,

• we still ignore other neutron collision events such as scattering,

• the system has a neutron source of strength S, which emits one neutron per source event,
traveling at speed v.

3.2 Forward Formulation

3.2.1 Probability Balance & Master Equation
We begin by defining the probabilistic quantity we wish to obtain:

Pn(t) = the probability of there existing n neutrons within the system at time t (3.1)

where we note the definition is now a little more ambiguous compared to Eq. 2.1. We do this now
because there are essentially two possible initial conditions that could cause there to be n neutrons
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IFE, lose 1
n0, gain 2 n0s

n − 1

No collisions n

n

SE, 1 n0 n − 1

No SE, 0 n0s n

Flow of
Time

t− ∆t t

mi

If

Figure 3.1: Forward formulation event tree for the BFM with a source and without capture. Note
IFE = induced fission event and SE = source event.

in the system at time t. First, there could be no discernible source within the system, but there are
m neutrons which could give rise to n neutrons at time t. Second, there could be a source and we
would therefore assume m = 0 from the first example.

To determine Pn(t), we use knowledge of the possible states the system could be occupying a
short time before t given by t−∆t. Thus we will conduct a probability balance over the time domain:

If = [t−∆t, t], (3.2)

where the subscript f refers to this being the forward time interval. We assume ∆t is sufficiently
small enough that only a single source event or neutron collision may reasonably occur within it. In
constructing the probability balance, let us first state the possible events that may occur within the
short time interval If :

1. A neutron collides and is absorbed, causes an induced fission event (IFE), and two neutrons
are emitted
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2. A source event occurs, producing 1 neutron

3. No event occurs (no neutrons collide with nuclei and no source events occur)

The event tree in Fig. 3.1 shows this list in action. In the figure, we see the event that may occur in
the far-left bubbles with the resultant number of neutrons that emerge, followed by the intermediary
state mi- the ith state that is event-connected to state n- which we use to aid in the forthcoming
probability balance. Note that this event tree has grown and we see that Fig. 2.1 is now but a
subset of this tree. Using the list above, we may write the probability balance in words as follows:

Pn(t) =

(
Probability of no source
event occurring in If

)
×
(

Probability that none of
the n n0s collide in If

)
×
(

Probability of being in
state n at time t−∆t

)

+

(
Probability of 1 source
event occurring in If

)
×

 Probability of being in a
population state that feeds
into state n at time t−∆t


+

 Probability of n− 1 n0s
colliding in If , causing

an IFE

×
 Probability of being in

population state n− 1
at time t−∆t


(3.3)

Notice how each event from the above list is multiplied by a connected (dependent) probabilistic
state. These connected states have already been defined for us with Eq. 3.1 where we need only
change the index and time argument to fix the description. We must next determine the probability
of a source event occurring, the probability of no neutrons colliding, and the probability of one
neutron colliding and inducing a fission. As before, the source, S, should be thought of as “the
probability of a source event occurring per unit time”, and thus we may define the probability of a
source event occurring in the time interval ∆t as:(

Probability of 1 source
event occurring in If

)
= S∆t. (3.4)

From Eq. 3.4 and keeping in mind that ∆t is sufficiently small, we may utilize the conservation of
probability to determine: (

Probability of no source
event occurring in If

)
= 1− S∆t. (3.5)

Next, we need to determine the probability that a neutron collides and induces a fission. Recall that
the reaction rate of interaction x, λx, can be thought of as the “probability that event type x occurs
per unit time per neutron”. Thus, for a single neutron propagating in the time interval ∆t, we have:(

Probability that 1
n0 collides in If

)
= λf∆t. (3.6)

Similar to how we arrived at Eq. 3.5, we use the conservation of probability to determine the
probability that one neutron does not collide in If as: 1−λf∆t. Notice that that expression is for a
single neutron, and we therefore need to multiply 1− λf∆t to itself for each neutron present in the
system. If no collisions have occurred in ∆t, then there must already be n neutrons in the system
at t−∆t. From this, we find:(

Probability that none of
the n n0s collide in If

)
= (1− λf∆t)

n
. (3.7)
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Note that λf in the above will become (λf + λc + . . .) as we include more interactions in later
chapters. Following that same multiplicative process, if we want to know the probability that n− 1
neutrons induce a fission in ∆t, we need to multiply λf∆t by itself n− 1 times to find: Probability of n− 1 n0s

colliding in If , causing
an IFE

 = (n− 1)λf∆t. (3.8)

Now let us address the connected state probabilities of Eq. 2.3. The first one is the “probability
of being in state n at time t−∆t”, and by comparing that statement to Eq. 2.1, we find that that
is equivalent to the quantity Pn(t − ∆t). The second connected state requires additional thought
as to what the index (i.e., the connected state) actually is. Since every source event produces one
and only one neutron, we require there to be n − 1 neutrons at time t − ∆t in order for there to
be n neutrons at time t due to a source event occurring within If . Thus, the second connected
probability statement, the “probability of being in a population state that feeds into state n at time
t−∆t”, equates to Pn−1(t−∆t). The final connected state requires n+ 1− 2 neutrons- +1 because
we lose the inducing neutron when it is absorbed and the −2 because we end up with 2 neutrons
released from the fission event.

Assembling these connected states with Eqs. 3.4 through 3.7, we may write down the probability
balance for this model:

Pn(t) = (1− S∆t) (1− λf∆t)
n
Pn(t−∆t) + S∆tPn−1(t−∆t) + (n− 1)λf∆tPn−1(t−∆t). (3.9)

Before continuing, we may simplify the “no event” probability by expanding (1−λf∆t)n in a Taylor
series about λf∆t = 0 for sufficiently small ∆t:

(1− λf∆t)n = 1− nλf∆t+
1

2
n(n− 1) (λf∆t)

2 − 1

6
n(n− 1)(n− 2) (λf∆t)

3
+ · · ·

= 1− nλf∆t+O
(

[∆t]
2
)
,

(3.10)

where O is the Big-O notation for the truncated Taylor series’ limiting behavior. We may then
write:

(1− S∆t) (1− λf∆t)
n

= 1− (S + nλf ) ∆t+O
(

[∆t]
2
)
. (3.11)

With the probability balance, Eq. 3.9, we may rearrange by subtracting by Pn(t − ∆t) and
dividing by ∆t to find:

Pn(t)− Pn(t−∆t)

∆t
= −

(
S + nλf −O (∆t)

)
Pn(t−∆t) +

(
S + (n− 1)λf

)
Pn−1(t−∆t). (3.12)

If we next take the limit as ∆t → 0, the left-hand side of Eq. 2.7 is simply the limit definition of
a derivative with respect to t. We then arrive at a linear first-order ordinary differential-difference
equation satisfied by Pn(t):

dPn(t)

dt
= −

(
S + nλf

)
Pn(t) +

(
S + (n− 1)λf

)
Pn−1(t), (3.13)

with n = 0, 1, 2, . . .. Recall from the assumptions of Sec. 3.1, we allow for an arbitrary number of
neutrons, m, in the system at time t = to, this provides an initial condition:

Pn(t = to) = δn,m =

{
1 if n = m

0 if n 6= m
(3.14)

where δi,j is the Kronecker delta function. Equation 2.8 is the Forward Master Equation (FME) for
the model defined in Sec. 3.1.
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3.2.2 Equation for the Probability Generating Function
We now transform the infinite set of differential-difference equations given by Eq. 3.13 into a single
PDE satisfied by the probability generating function (PGF), defined as:

G(z, t) =

∞∑
n=0

znPn(t). (3.15)

We will also make use of the z-derivative of G, which is written as:

∂G(z, t)

∂z
=

∞∑
n=0

nzn−1Pn(t). (3.16)

The transformation is facilitated by multiplying Eq. 3.13 by zn and summing over all n to find:
∞∑
n=0

zn
dPn(t)

dt
= −

∞∑
n=0

zn
(
S + nλf

)
Pn(t) +

∞∑
n=0

zn
(
S + (n− 1)λf

)
Pn−1(t). (3.17)

As before, the LHS is simply ∂G/∂t and the first term on the RHS is −SG. The next term on the
RHS is converted as follows:

λf

∞∑
n=0

nznPn(t) =
z

z
λf

∞∑
n=0

nznPn(t)

= zλf

∞∑
n=0

nzn−1Pn(t)

= zλf
∂G(z, t)

∂z
,

(3.18)

where we simply multiplied by z/z in order to make it more clear that this term is related to the
partial derivative of G with respect to z as given by Eq. 3.16. This trick should be kept in mind
when a coefficient of n shows up in the sum. For the next term, we use an index shift: m = n− 1:

S

∞∑
n=0

znPn−1(t) =S

∞∑
m=0

zm+1Pm(t)

= zS

∞∑
m=0

zmPm(t)

= zSG(z, t),

(3.19)

where we note that when n = 0 and thus m = −1 gives an unrealistic probability P−1, and we
therefore set m = 0 as the lower sum limit. The final term requires an index shift as well. Define
m = n− 1, to find:

λf

∞∑
n=0

(n− 1)znPn−1(t) = zλf

∞∑
m=0

mzmPm(t)

=
z

z
zλf

∞∑
m=0

mzmPm(t)

= z2λf
∂G(z, t)

∂z
,

(3.20)
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where we multiplied by z/z to get the sum into terms of the derivative of G with respect to z.
Assembling Eqs. 3.18 through 3.20 yields the PGF PDE:

∂G(z, t)

∂t
= λf

(
z2 − z

) ∂G(z, t)

∂z
+ S(z − 1)G(z, t) (3.21)

with initial condition given by:
G(z, to) = zm, (3.22)

where m is the initial neutron population in the system.
Notice now that Eq. 3.21 is equivalent to the previous PGF PDE, Eq. 2.15, but now with the

λf (z2 − z) ∂G/ ∂z term included. This new term has a λf associated with it and should therefore
be thought of as the neutron interaction effects that are now included in this model. As we add
more neutron interactions in later chapters, we will see the coefficient of ∂G/∂z evolve into a more
complicated expression to account for additional physics. On that note, the S(z−1)G term appears
the same as before because there are no changes to the nature/character of the source. Once we
allow for the source to emit more than one particle per event, we will see this term change as well.
Just as before, we solve this first-order linear hyperbolic PDE using the Method of Characteristics,
shown in the next section.

3.2.3 Solution to PGF PDE
To arrive at a solution to the PGF PDE given by Eq. 3.21, we use the Method of Characteristics.
By taking the total derivative of G with respect to t,

dG

dt
=
∂G

∂z

dz

dt
+
∂G

∂t
(3.23)

and comparing with the PGF PDE, we may write down the characteristic equations:

dz

dt
= − λf

(
z2 − z

)
(3.24a)

dG

dt
=S(z − 1)G. (3.24b)

Note now that z is not a constant like it was when no neutron interactions were allowed. Equation
3.24a is a Bernoulli ODE of order 2 and is solvable. For a k-order Bernoulli ODE, we make the
substitution y = z1−k, which has the derivative:

dy

dt
= (1− k)z−k

dz

dt
. (3.25)

Plugging these into Eq. 3.24a gives a linear inhomogeneous first-order ODE:

1

1− k
dy

dt
− λfy = λf . (3.26)

Using k = 2, the integrating factor technique provides y, from which we may obtain z to find:

z(t) =
zo

zo + (1− zo) exp {−λf (t− to)}
, (3.27)

where we have defined zo = z(to) as the initial value of z(t).
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Next, Eq. 3.24b is separable and can be integrated directly to find the expression

G(z, t) = G(zo, to) exp

{
S

∫ t

to

dt′ (z(t′)− 1)

}
. (3.28)

Thus, by inserting Eq. 3.27 into the integral above, we can find a solution for G which we will then
be able to use to find Pn(t).

It is at this point that we consider two separate cases for which the initial condition changes:

1. The case where there is no source (by setting S = 0) and there is a single initial neutron in
the system (set m = 1 in Eq. 3.22).

2. The case with a source present but no initial neutrons within the system (set m = 0 in Eq.
3.22).

These two cases are of importance because, well, they are fundamental. To elaborate, we consider
case 1 to better understand the effects a single neutron and its progeny will have on the system. One
clear concern is understanding the probability that a single neutron could initiate a fission chain
that makes a reactor go supercritical- putting lives and the environment at risk. Case 2 is useful
for modeling a system with, say, a spontaneous fission source and we may wish to know how much
moderator/shield/absorber we may need in an experimental set-up. Further, the single chain case
is a sub-set of the source case in that every source event initiates individual neutron chains, each
of which may be modeled by the results of Case 1. With that, let us consider each case separately
below.

Single Chain Solution

By setting m = 1 in Eq. 3.22 and setting S = 0 in Eq. 3.28, we find the expression for G:

G(z, t) = G(zo, to) = zo. (3.29)

This tells us that the solution G is a constant along the characteristic curve and is defined by the
initial condition zo. We could have also arrived at this expression by inspecting the S = 0 case of
Eq. 3.24b: dG/dt = 0, which tells us that the solution is a constant.

Proceeding, we now need an expression for zo, which is obtained using Eq. 3.27 to find:

zo =
ze−λf (t−to)

1 + z
(
e−λf (t−to) − 1

) . (3.30)

Thus, we find the solution:

G(z, t) =
ze−λf (t−to)

1− z
(
1− e−λf (t−to)

) . (3.31)

Singlet-Emitting Source Solution

For the source case, we simply set m = 0 in the initial condition, Eq. 3.22. This simplifies our
solution expression to:

G(z, t) = exp

{
S

∫ t

to

dt′ (z(t′)− 1)

}
. (3.32)

35



The integral in the above may be computed with the aid of Eq. 3.27 to find:

S

∫ t

to

dt′ (z(t′)− 1) =S

∫ t

to

dt′
(
−1 +

zo

zo + (1− zo)e−λf (t′−to)

)
= − S(t− to) +

S

λf
ln
[
1 + zo

(
e+λf (t−to) − 1

)]
.

(3.33)

Next, we eliminate zo from the above using Eq. 3.30 to find, after some algebra:

G(z, t) = e−S(t−to)
[
1− z

(
1− e−λf (t−to)

)]−S/λf
. (3.34)

3.2.4 Inversion of the PGF
As was done in the previous chapter, Sec. 2.2.4, we invert G to obtain Pn by Taylor expanding the
expressions, Eqs. 3.31 and 3.34, about z = 0.

Single Chain Solution

We aim to invert Eq. 3.31, which can be done by rearranging and Taylor expanding about z = 0:

G(z, t) = ze−λf (t−to)
[
1− z

(
1− e−λf (t−to)

)]−1

= ze−λf (t−to)
∞∑
n=0

(
1− e−λf (t−to)

)n
zn

(3.35)

where we note that this expansion is convergent because the quantity (1 − e−λf (t−to)) is always
bounded between 0 and 1 and therefore the entire bracketed quantity on the first line of Eq. 3.35
is also bounded between 0 and 1 for all t and all z ∈ [0, 1]. Let us absorb the z in the front of the
expression of Eq. 3.35 into the sum, define the index m = n + 1 to find (and rename the index
m→ n):

G(z, t) = e−λf (t−to)
∞∑
n=1

(
1− e−λf (t−to)

)n−1

zn (3.36)

By now comparing Eq. 3.36 with the original definition of the PGF: G(z, t) =
∑∞
n=0 z

nPn(t),
we may extract the neutron number PDF for a single chain to find:

Pn(t) = e−λf (t−to)
[
1− e−λf (t−to)

]n−1

(3.37)

for n = 1, 2, 3, . . .. Note that the value for n = 0 is P0(t) = 0 because we have a single initial
neutron that can only induce fissions, thus the chain will not die away because we have not allowed
for any mechanism to do so. We may also verify the initial condition by setting t = to to find
Pn(to) = δn,1 = 0n−1. Thus, 0n−1 is equal to 0 except when n = 1, whence 00 = 1, proving the
initial condition is satisfied.
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Singlet-Emitting Source Solution

The source case is obtained by first defining

η =
S

λf
(3.38)

for brevity. This parameter is referred to Bell’s parameter in honor of G. I. Bell. We will be seeing
more developed versions of this parameter in later chapters. Equation 3.34 may be Taylor expanded
about z = 0 to yield:

G(z, t) = e−S(t−to)
[
1− z

(
1− e−λf (t−to)

)]−η
= e−S(t−to)

∞∑
n=0

η(η + 1) · · · (η + n− 1)

n!

(
1− e−λf (t−to)

)n
zn.

(3.39)

This series is convergent for the same reasons described in the single chain inversion section above.
Once again, if we compare the above expression with the original definition of the PGF: G(z, t) =∑∞
n=0 z

nPn(t), we find the neutron number distribution in the presence of a singlet-emitting source.
Noting the identity:

η(η + 1) · · · (η + n− 1) =
Γ(η + n)

Γ(η)
, (3.40)

where Γ(·) is the gamma function1, the number distribution is stated as:

Pn(t) = e−S(t−to) Γ(η + n)

n!Γ(η)

(
1− e−λf (t−to)

)n
. (3.41)

We may verify the initial condition, Pn(to) = δn,0, by setting t = to to find Pn(to) = Γ(η +
n)/(n!Γ(η))0n. Thus, 0n is only non-zero when n = 0, whence 00 = 1- verifying the initial condition.

3.3 Backward Formulation
We now present the backward Master equation formulation for this model following the steps outlined
in Sec. 1.3. Aside from the additional physics, we now run into the first major difference in how
to correctly conduct the backward formulation and how we solve this problem. We must first write
down the probability balance for a single neutron without any sources present (this is equivalent to
the single neutron initial condition problem for the forward formulation, but the probability balance
is conducted in the first collision interval). We then write down a separate probability balance for
the case of a source without any initial neutrons present. As we will see, the source problem will be
a function of the single chain problem’s solution. This is because a source is producing single chains
with every source event, whence those chains go on to propagate independently from one another.

The reason we must write down two separate balance equations has to do with the way we pose
the question, “How does the system behave probabilistically?” Well, if we have a source present,
we will see that we need to single chain solution to correctly answer that question. If we instead
start with writing the single chain case with a source, like we do in the forward formulation, we
will find an equation that describes the probabilistic behavior of the population for which a single

1The gamma function has a rich history dating back to D. Bernoulli, C. Goldbach, and L. Euler of the 1720’s. In
essence, it is the generalization of the factorial function to non-integer numbers and complex numbers [44].
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Figure 3.2: Mutually exclusive events that may occur in time interval Ib with their associated
states, mi, that must occur in time interval Icb for a single initiating neutron. IFE = Induced Fission
Event. Note the ‘zig-zags’ indicate an arbitrary passage of time. If the initial n0 collides in Ib,
causing an IFE and producing 2 n0s, then those 2 n0s must propagate through Icb must result in n
n0s. If no collision occurs in Ib, then the initial n0 must propagate in Icb , ultimately resulting in n
n0s.

source event occurs at exactly the initial time (i.e., the initial neutron is treated as a source event
with a known time) along with the single event probability that occurs in Ib and the other arbitrary
source events that occur randomly throughout Icb . Clearly, this scenario has no direct reference to
a real measurable situation, where we would need to know the exact moment a single event occurs
which is far too restrictive. From a mathematical point of view, the solution to such a probability
balance would be non-unique because it would be an underdetermined equation (one equation with
two unknowns).

We proceed by conducting the probability balances for the two cases: the single chain case and
the source case. We then continue the MESA for both cases, solving the single chain equation first
since the source case is a function of the single chain solution.

3.3.1 Probability Balance & Master Equation
As before, we define the time intervals of interest for the upcoming probability balances:

Ib = [to, to + ∆to] (3.42a)

Icb = [to + ∆to, t] (3.42b)

where we see that the entire time interval, from introduction of the source at to to observation of
the system at t, is given by Ib + Icb . Also, we use the superscript c to denote the complement.
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Single Chain

We begin by defining the probability we wish to know:

Pn(t|to) = the probability of there existing n neutrons within the system at time t due
to the introduction of a single neutron at an earlier time to.

(3.43)

Recall that we are conducting a balance in the first collision interval (i.e., within the time interval
defined by Ib). For the single initial neutron, the list of mutually exclusive events that occur in the
first collision interval, Ib, are:

1. the neutron does not collide with a nucleus composing the medium,

2. the neutron does collide, inducing a fission event and producing 2 neutrons.

Let us again proceed with a cautionary note. We assume ∆to is sufficiently small such that if a
collision occurs the resulting neutrons will not interact with the system. Also, although ∆to is very
small, the difference in time between to+∆to and t (i.e. Icb ) is arbitrarily large. Thus, there could be
additional events that may occur in the remaining time Icb and we will need to include that possibility
in our probability balance. To further illustrate this, Fig. 3.2 shows the events and how they may
occur over the total time interval, where we note that the zig-zigs mean an arbitrary passage of time
and IFE stands for induced fission event. In this figure, we see the list of events that may occur in
Ib, followed by a passage of time in Icb where the neutron chain propagates ultimately resulting in
n neutrons at t. For the case of an IFE occurring in Ib, those 2 neutrons will propagate and each
branch will produce a population n1 and n2 such that n1 + n2 = n in order for that probability set
to contribute to Pn(t|to).

The probability balance in words is then:

Pn(t|to) =

(
Probability the initial n0

does not collide in Ib

)
×
(
Probability the initial n0 collides
in Icb , resulting in n neutrons at t

)
+

(
Probability initial n0 collides in Ib,
causing an IFE, producing 2 n0s

)
×
(
Probability those 2 n0s produce n1 and
n2 n0s, such that n1 + n2 = n, in Icb

)
.

(3.44)

We can define the probability of a collision occurring in Ib by noting that the only event that will
occur following a collision is an IFE, thus we find:(

Probability initial n0 collides
in Ib causing an IFE

)
= λf∆to (3.45)

It follows then that the probability of not colliding in Ib is:(
Probability initial n0

does not collide in Ib

)
= 1− λf∆to (3.46)

Next, we need not consider explicit, singular events that may occur in Icb to write the subsequent
probabilities. Let us first consider the ‘probability the initial neutron collides in Icb , resulting in
n neutrons’ by changing the wording to the ‘probability of there being n neutrons at time t due
to the introduction of a neutron at time to + ∆to.’ Similarly, let us alter the ‘probability those 2
neutrons produce n1 and n2 neutrons, such that n1 + n2 = n, in Icb ’ to the ‘probability of there
being ni neutrons at time t due to the introduction of a neutron at time to+∆to,’ for which i = 1, 2.

39



Noting that n1 and n2 can be an arbitrary set of combinations, we must actually sum over all those
combinations to get the full probability encompassed in the statement. Then by comparing the
definition given by Eq. 3.43 with these re-wordings of the events that may occur in Icb , we find:(

Probability the initial n0 collides
in Icb , resulting in n neutrons at t

)
=Pn(t|to + ∆to) (3.47a)(

Probability those 2 n0s produce n1 and
n2 n0s, such that n1 + n2 = n, in Icb

)
=

∑
n1+n2=n

Pn1(t|to + ∆to)Pn2(t|to + ∆to). (3.47b)

For now, we will keep the summation notation that we have written above, but this sum is really a
double sum over all possible combinations of n1 and n2 that satisfy the condition n1 + n2 = n. We
will need to keep this in mind later when we are transforming the Master equation to an equation
for the probability generating function. Assembling all of the above, we obtain the first collision
probability balance for an initial neutron:

Pn(t|to) = (1− λf∆to)Pn(t|to + ∆to) + λf∆to
∑

n1+n2=n

Pn1
(t|to + ∆to)Pn2

(t|to + ∆to). (3.48)

Next, we divide by ∆to and subtract Pn(t|to + ∆to) to find:

−Pn(t|to + ∆to)− Pn(t|to)
∆to

= −λfPn(t|to+∆to)+λf
∑

n1+n2=n

Pn1(t|to+∆to)Pn2(t|to+∆to). (3.49)

On the left-hand side, we have placed the Pn(t|to + ∆to) in front of the Pn(t|to) to make the next
step easier. If we now evaluate the limit as ∆to → 0, the LHS becomes the derivative of Pn(t|to)
with respect to to, and we thus have:

−∂Pn(t|to)
∂to

= −λfPn(t|to) + λf
∑

n1+n2=n

Pn1
(t|to)Pn2

(t|to), n = 0, 1, 2, . . . (3.50)

which is the backward Master equation for the neutron number distribution due to the introduction
of a single neutron at time to in a system where the BFM applies. The ‘final’ condition is:

lim
to→t

Pn(t|to) = δn,1 (3.51)

where δi,j is the Kronecker delta function. This condition tells us that as we bring the neutron
injection time to up to the time of observation t, the probability of there being one neutron in the
system is guaranteed.

A difference between this equation and that of the FME, Eq. 3.13 with S = 0, is that the BME
is second-order nonlinear (due to the products Pn1

Pn2
). This nonlinearity has appeared because we

need to consider all the possible probabilistic combinations that will result in n neutrons at t due to
the two independent chains produced in the IFE in the first collision interval. Something to think
about for upcoming chapters: what order of nonlinearity would the BME be if we required j and
only j neutrons to be emitted per IFE? (the answer is j-order). Again, we need to keep track of two
time quantities: to and t because to is the operational time variable (i.e., we are taking a derivative
with respect to to, not t).
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Figure 3.3: Mutually exclusive events that may occur in time interval Ib with their associated
states, mi, that must occur in time interval Icb for a singlet-emitting source. SE = Source Event.
Note the ‘zig-zags’ indicate an arbitrary passage of time. If a SE occurs in Ib, producing 1 n0, then
subsequent SEs occurring in Icb must produce m n0s and the source n0 must produce n−m n0s. If
no SE occurs in Ib, then subsequent SEs that occur in Icb must result in n n0s.

Source

The probability balance and BME derivation for the source case proceeds just as in Chapter 2,
Sec. 2.3.1, with the added complexities of neutron induced fission and multiplication. To begin, we
define:

Θn(t|to) = the probability of there existing n neutrons within the system at time t due
to the introduction of a source of strength S at an earlier time to.

(3.52)

Notice this equation is identical to Eq. 2.26, where the difference will be in the physics we incorporate
into the RHS.

As we did in Sec. 2.3.1, let us first consider the events that may take place in the first collision
interval, from which we will be able to write down a clear probability balance in words. The list of
mutually exclusive events that occur in the first collision interval, Ib, are the same as before:

1. No source event occurs

2. A source event occurs, producing 1 neutron.

Note that we assume there are initially zero neutrons within the system and thus no neutron inter-
actions/collisions can occur. Once again, recall ∆to is sufficiently small such that only one event
may occur in ∆to. We now need to consider the possible pathways stemming from the list above
that may lead to the state-space n at time t. In other words, given the two events that may occur
in Ib, what consequential events will occur in Icb that will lead to n neutrons at t. Using Fig. 3.3,
we see that if there is no source event (SE) in Ib, then there must be a collection of source events in
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Icb that lead to n neutrons at t. If there is a SE, then a single neutron is emitted and we therefore
must consider that neutron’s progeny (i.e., the neutrons produced in the fission chain) resulting in
n1 neutrons as well as subsequent SEs resulting in m = n−n1 neutrons. Note here that n = m+n1,
because if it does not then this particular set of events will not contribute to the LHS of Eq. 3.52.

With this, we may define a probability balance in words:

Θn(t|to) =

(
Probability of no SE

occurring in Ib

)
×
(
Probability of subsequent SEs occurring

in Icb resulting in n n0s at t

)
+

(
Probability of 1 SE occurring

in Ib producing in 1 n0

)
×
(
Probability that 1 n0 produces

n1 n0s in Icb at t

)
×
(
Probability of subsequent SEs occurring

in Icb resulting in n− n1 n0s at t

)
.

(3.53)

Just as before, we can easily define the probability of a source event occurring in the short time ∆to
by recalling that the source, S, is defined as ‘the probability of a source event occurring per unit
time’, which results in the following:(

Probability of 1 SE occurring
in Ib producing in 1 n0

)
= S∆to (3.54)

Next, we may define the complement of Eq. 2.29 using the conservation of probability to find:(
Probability of no SE

occurring in Ib

)
= 1− S∆to (3.55)

Next, we need not consider explicit, singular events that may occur in Icb to write the subsequent
probabilities. Let us first consider the ‘probability of subsequent SEs occurring in Icb resulting in n
n0s at t,’ by changing the wording to the ‘probability of there being n neutrons at time t due to the
introduction of a source at time to+∆to,’ which is simply equivalent to Θn(t|to+∆to). We may make
this equivalence because each source event is independent of all other source events. Similarly, let us
alter the ‘probability of subsequent source events occurring in Icb resulting in m = n−n1 neutrons at
t’ to the ‘probability of there being m = n−n1 neutrons at time t due to the introduction of a source
at time to+∆to,’ which is Θm(t|to+∆to). Finally, we change the ‘probability the 1 neutron produces
n1 neutrons in Icb at t’ to the ‘probability of there being n1 neutrons at t due to the introduction of
a single neutron at time to + ∆to,’ which is Pn1

(t|to + ∆to). Now, because m and n1 are arbitrary,
we must sum over all combinations of m+n1 that satisfy the condition m+n1 = n, which we write
colloquially as:

∑
m+n1=n().

Assembling these together, we obtain the first collision probability balance for a singlet-emitting
neutron source in an infinite medium with no capture and binary fission:

Θn(t|to) = (1− S∆to)Θn(t|to + ∆to) + S∆to
∑

m+n1=n

Θm(t|to + ∆to)Pn1
(t|to + ∆to). (3.56)

Next, we divide by ∆to and subtract Θn(t|to + ∆to) to find:

−Θn(t|to + ∆to)−Θn(t|to)
∆to

= −SΘn(t|to+∆to)+S
∑

m+n1=n

Θm(t|to+∆to)Pn1
(t|to+∆to). (3.57)

If we now evaluate the limit as ∆to → 0, the LHS becomes the derivative of Θn(t|to) with respect
to to, and we have:

−∂Θn(t|to)
∂to

= −SΘn(t|to) + S
∑

m+n1=n

Θm(t|to)Pn1(t|to), n = 0, 1, 2, . . . (3.58)
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which is the backward Master equation for the neutron number distribution in the presence of a
singlet-emitting neutron source in an infinite medium with the binary fission model and no capture.
The ‘final’ condition, for which there are zero neutrons in the system at time to, is given by

lim
to→t

Θn(t|to) = δn,0 (3.59)

where δi,j is the Kronecker delta function.
As with the single chain case, we see Eq. 3.58 is substantially more complex than the radioactive

decay BME, Eq. 2.34. With the inclusion of neutron interactions, we see that the source BME is
a function of the solution to the single chain BME, Pn(t|to). This dependence arose because we
require knowledge of the single chain that is initiated by the source event that occurs in the first
collision interval. As a preliminary thought, what might we expect the equation to look like if we
allowed for j neutrons to be emitted after that Ib source event? (answer: we would then need to
account for each chain’s population, n1, n2, . . . , nj , at time t that sum to n with subsequent source
event contributions accounted for as well).

3.3.2 Equations for the Probability Generating Function
We now transform the BMEs, given by Eqs. 3.50 and 3.58, using the probability generating functions
(PGFs).

Single Chain

We now transform the infinite set of differential-difference equations given by Eq. 3.50 into a single
PDE satisfied by the probability generating function (PGF), defined as:

G(z, t|to) =

∞∑
n=0

znPn(t|to). (3.60)

The transformation is facilitated by multiplying Eq. 3.50 by zn and summing over all n to find:

−
∞∑
n=0

zn
∂Pn(t|to)
∂to

= −λf
∞∑
n=0

znPn(t|to) + λf

∞∑
n=0

zn
∑

n1+n2=n

Pn1
(t|to)Pn2

(t|to). (3.61)

The LHS is simply − ∂G/∂to and the first term on the RHS is −λfG. The combinatorial sum on
the RHS is converted as follows:

I2(z, t|to) =

∞∑
n=0

zn
∑

n1+n2=n

Pn1
(t|to)Pn2

(t|to)

=

∞∑
n=0

zn
∞∑

n1=0

Pn1

∞∑
n2=0

Pn2
, n1 + n2 = n

=

∞∑
n1=0

Pn1

∞∑
n=0

znPn−n1
.

(3.62)

In the second line, we explicitly allow for n1 and n2 to sum to infinity such that the only contributing
(non-zero) terms are the terms that satisfy the explicit condition n1 + n2 = n. In going from the
second to third line, we have restricted values of n2 to be those that satisfy n2 = n − n1 and thus
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the sum over n2 vanishes because there is only one value of n2 which satisfies n2 = n − n1 for a
given n1. Next, define the index j = n − n1, then n = j + n1 and zn = zjzn1 . Noting that when
n = 0, j = −n1 and since P−n1

= 0, we may start the sum at j = 0, we find:

I2(z, t|to) =

∞∑
n1=0

zn1Pn1
(t|to)

∞∑
j=0

zjPj(t|to)

=G(z, t|to)G(z, t|to)
=
[
G(z, t|to)

]2
.

(3.63)

where we note that, going from the first to the second line, the sums are completely decoupled from
one another and we therefore obtain a simple product of the PGF.

Assembling the transformations yields the single chain PGF PDE:

−∂G(z, t|to)
∂to

= −λfG(z, t|to) + λf
[
G(z, t|to)

]2 (3.64)

with final condition given by:
lim
to→t

G(z, t|to) = z. (3.65)

This PGF PDE for the single chain is a first-order quadratically nonlinear PDE which can be solved
with the Method of Characteristics.

Comparing Eq. 3.64 with the single chain forward version of Eq. 3.21 (set S = 0), we see some
big differences between the forward and backward equations. First, the backward equation does not
have a ∂G/ ∂z term while the forward equation does. Also, the forward equation is linear while the
backward equation is nonlinear due to the G2 term. We also note that, aside from the initial and
final conditions (which are functionally the same), the backward equation does not have any explicit
z dependence while the forward equation has the variable coefficient λf (z2−z). It is interesting that
the forward equation has a z2 while the backward case has a G2 appearing the respective equations.
The resemblance between Eq. 3.64 and the characteristic equation 3.24a demonstrates that, aside
from the direction of time, these two equations are providing the same information about the single
chain probabilistic propagation mechanics. On a final note, the backward equation has a negative
time derivative (i.e., an adjoint time derivative) and when we attempt to solve it, we will need to
integrate backwards in time.

Source

The probability generating function (PGF) for the source case is defined as:

H(z, t|to) =

∞∑
n=0

znΘn(t|to), (3.66)

where we intentionally use a different symbol from the single chain PGF, G. The transform variable,
z, is a real number with domain: z ∈ [0, 1], which ensures absolute convergence.

We may transform the BME given by Eq. 3.58 by multiplying the equation by zn and summing
over all n to find:

−
∞∑
n=0

zn
∂Θn(t|to)

∂to
= −S

∞∑
n=0

znΘn(t|to) + S

∞∑
n=0

zn
∑

m+n1=n

Θm(t|to)Pn1(t|to). (3.67)
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We may immediately see that the LHS becomes − ∂H/∂to and the first term on the RHS becomes
−SH. Let us take special care to analyze the combinatorial sum, IS1 , where the subscript denotes
the number of neutrons emitted per source event:

IS1 (z, t|to) =

∞∑
n=0

zn
∑

m+n1=n

Θm(t|to)Pn1
(t|to)

=

∞∑
n=0

zn
∞∑
m=0

Θm

∞∑
n1=0

Pn1
, m+ n1 = n

=

∞∑
m=0

Θm

∞∑
n=0

znPn−m.

(3.68)

In the second line, we explicitly allow for m and n1 to sum to infinity such that the only contributing
(non-zero) terms are the terms that satisfy the explicit condition m + n1 = n. In going from the
second to third line, we have restricted values of n1 to be those that satisfy n1 = n−m and thus the
sum over n1 vanishes because there is only one value of n1 which satisfies n1 = n −m for a given
m. Next, define the index j = n −m, then n = j + m and zn = zjzm. Noting that when n = 0,
j = −m and since P−m = 0, we may start the sum at j = 0, we find:

IS1 (z, t|to) =

∞∑
m=0

zmΘm(t|to)
∞∑
j=0

zjPj(t|to)

=H(z, t|to)G(z, t|to).
(3.69)

where we note that, going from the first to the second line, the sums are completely decoupled from
one another and we therefore obtain a simple product of the single chain and source PGFs.

Assembling the transformed quantities, we obtain a PDE for the source PGF:

−∂H(z, t|to)
∂to

= −SH(z, t|to) + SH(z, t|to)G(z, t|to) (3.70)

with the final condition
lim
to→t

H(z, t|to) = 1. (3.71)

This equation is easily solved via separation of variables and then integration backwards in time.

3.3.3 Solution to the PGF PDE
Single Chain

We now aim to solve Eq. 3.64 for G using the Method of Characteristics. Noting the total derivative
of G with respect to to is:

dG

dto
=
∂G

∂to
+
∂G

∂z

dz

dto
, (3.72)

from which we obtain the following system of ODEs:

dz

dto
= 0 (3.73a)

dG

dto
=λfG− λfG2. (3.73b)
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Equation 3.73a informs us that z is a constant and Eq. 3.73b is a Riccati equation which can be
solved by linearizing with the variable w = 1/G and then solved with the integrating factor. Solving
the linear equation in w, reverting back to G, and using the final condition, Eq. 3.65, yields:

G(z, t|to) =

[
1 +

1− z
z

e−λf (t−to)

]−1

(3.74)

which can be rearranged as:

G(z, t|to) =
ze−λf (t−to)

1− z[1− e−λf (t−to)]
(3.75)

which is exactly equivalent to Eq. 3.31, the forward single chain solution.

Source

To find the system of characteristic ODEs, let us consider the total derivative of H:

dH

dto
=
∂H

∂to
+
∂H

∂z

dz

dto
. (3.76)

Comparing this equation to the BME given by Eq. 3.70, we may infer the system of ODEs as:

dz

dto
= 0 (3.77a)

dH

dto
=SH(−1 +G). (3.77b)

Again, Eq. 3.77a informs us that z is a constant and Eq. 3.77b is a first-order separable ODE.
Inserting Eq. 3.75 into Eq. 3.77b, separating and integrating provides:∫ H(z,t|to)

H(z,t|t)

dH

H
= S

∫ to

t

dt′o

[
1 +

z

1− z e−λf (t−t′o)

]−1

. (3.78)

Recalling the final condition H(z, t|t) = 1, the above is solved:

ln [H(z, t|to)] = −S(t− to) +
S

λf
ln

[
1

1− z
(
1− e−λf (t−to)

)] . (3.79)

Solving for H yields the solution:

H(z, t|to) = e−S(t−to)
[
1− z

(
1− e−λf (t−to)

)]−η
, (3.80)

where η is defined by Eq. 3.38, replicated here for convenience:

η =
S

λf
. (3.81)

Note that Eq. 3.80 is identical to the forward formulation counterpart, Eq. 3.34.
The next step will be to find the number distribution using this solution, shown in the next

section.
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3.3.4 Inversion of the PGF
Since the PGF solutions for the forward and backward case are identical, the following is the same
as what is presented in Sec. 3.2.4. We replicate the process below in the spirit of completion and to
reinforce the process.

Single Chain

We aim to invert Eq. 3.75, which can be done by rearranging and Taylor expanding about z = 0:

G(z, t|to) = ze−λf (t−to)
[
1− z

(
1− e−λf (t−to)

)]−1

= ze−λf (t−to)
∞∑
n=0

(
1− e−λf (t−to)

)n
zn

(3.82)

where we note that this expansion is convergent because the quantity (1 − e−λf (t−to)) is always
bounded between 0 and 1 and therefore the entire bracketed quantity on the first line of Eq. 3.82
is also bounded between 0 and 1 for all t and all z ∈ [0, 1]. Let us absorb the z in the front of the
expression of Eq. 3.82 into the sum, define the index m = n+ 1 (and rename the index m→ n) to
find:

G(z, t|to) = e−λf (t−to)
∞∑
n=1

(
1− e−λf (t−to)

)n−1

zn (3.83)

By now comparing Eq. 3.83 with the original definition of the PGF:G(z, t|to) =
∑∞
n=0 z

nPn(t|to),
we may extract the neutron number PDF for a single chain to find:

Pn(t|to) = e−λf (t−to)
[
1− e−λf (t−to)

]n−1

(3.84)

for n = 1, 2, 3, . . .. Note that the value for n = 0 is P0(t) = 0 because we have a single initial
neutron that can only induce fissions, thus the chain will not die away because we have not allowed
for any mechanism to do so. We may also verify the initial condition by setting t = to to find
Pn(to) = δn,1 = 0n−1. Thus, 0n−1 is equal to 0 except when n = 1, whence 00 = 1, proving the
initial condition is satisfied.

Singlet-Emitting Source Solution

Equation 3.80 may be Taylor expanded about z = 0 to yield:

H(z, t|to) = e−S(t−to)
[
1− z

(
1− e−λf (t−to)

)]−η
= e−S(t−to)

∞∑
n=0

η(η + 1) · · · (η + n− 1)

n!

(
1− e−λf (t−to)

)n
zn.

(3.85)

This series is convergent for the same reasons described in the single chain inversion section above.
Once again, if we compare the above expression with the original definition of the PGF: H(z, t|to) =∑∞
n=0 z

nΘn(t|to), we find the neutron number distribution in the presence of a singlet-emitting
source. Noting the identity:

η(η + 1) · · · (η + n− 1) =
Γ(η + n)

Γ(η)
, (3.86)
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Figure 3.4: Neutron number distributions for a single chain in a system that follows the BFM
without capture.

where Γ(·) is the gamma function, the number distribution is stated as:

Θn(t|to) = e−S(t−to) Γ(η + n)

n!Γ(η)

(
1− e−λf (t−to)

)n
. (3.87)

We may verify the final condition, Θn(t|t) = δn,0, by setting t = to to find Θn(t|t) = Γ(η +
n)/(n!Γ(η))0n. Thus, 0n is only non-zero when n = 0, whence 00 = 1- verifying the final condition.

3.4 Examples & Discussion
Consider the system where there is no capture, σc = 0 b, and therefore every time a neutron collides
with a nucleus, an induced fission event occurs and we have pf = σf/(σf + σc) = 1 (from Eq.
1.8). Following every collision, exactly two neutrons are emitted (qfν = δν,2- the BFM) and therefore
ν = 2 and k = νpf = 2 (from Eq. 1.7). Although a neutron is lost in the absorption process, two
neutrons emerge and we technically do not have a loss mechanism within the model still; therefore
it is expected that the neutron chain will not (and cannot) perish. This is further expressed in Eq.
3.37 (and Eq. 3.84), where we explicitly cannot set n = 0 in that equation. We have calculated the
neutron number distribution due to a single initial neutron for this system using Eq. 3.37 (or Eq.
3.84), shown in Fig. 3.4. For this system, we are assuming the neutrons are fast (14 MeV) and thus
have a velocity of v = 5.174 · 109 cm/s. The system is composed of pure 235U metal and useful data
can be found in Table 3.1.

Figure 3.4 shows the number distribution due to a single neutron that is introduced at time
to = 0 s at several later times t (scaled by the neutron lifetime, τ). As mentioned above, there
is no loss mechanism and therefore the chain’s population will only grow as time progresses and
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Table 3.1: Data for a 235U system that follows the BFM without capture.

N [b−1cm−1] σf [b] σc [b] ν v [cm/s] τ [ns] λf [1/s]

0.05088 2.053 0 2 5.174 ·109 1.8501 5.4050 · 108

Figure 3.5: Neutron number distributions due to a singlet-emitting source in a system that follows
the BFM without capture.

more generations of neutrons are produced. Noting that the horizontal axis starts at n = 1, we
see this ever-growing behavior expressed as a reduction of P1 as time progresses, telling us that the
probability that the initial neutron has not collided and induced a fission is exponentially decaying
in time. As P1 decreases, the distribution’s mass moves toward the right (toward∞) and appears to
‘flatten’. This flattening is accompanied by an overall reduction in the magnitude of the distribution
(although it is still normalized) because the neutron population is moving outward toward ∞ with
certainty. If we evaluated the limit as t → ∞ of Eq. 3.37, we would find limt→∞ Pn(t) = 0 for all
n ∈ R. This must be interpreted with caution, as we know the chain’s population is always growing
and there must then be a value of n that satisfies the normalization condition as well as our intuition.
That value is n = ∞, which tells us that in the infinite future, we will have an infinite number of
neutrons within the system with probability P∞(∞) = 1.

We now consider the case where the above 235U system has a singlet-emitting neutron source at
a given time of t = τ . Figure 3.5 shows the neutron number distribution due to several sources of
varying strength where we have expressed the magnitude of the source strength in terms of η, Bell’s
parameter, which is defined by Eq. 3.38 for the BFM. For convenience, we state it here: η = S/λf ,
which is essentially the ratio of the source rate to the induced fission rate and is a measure of the two
competing neutron production mechanisms. As we see in Fig. 3.5, the larger η (corresponding to
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larger S relative to a constant λf ), the lower the probability of finding zero neutrons in the system at
a given time. This agrees with our intuition, which is to expect P0 to be lessened as the probability of
a source event per unit time is increased. An additional feature worth noting is that the distribution
undergoes a qualitative change from a monotonically decreasing distribution for η < 1 to a unimodal
distribution when η > 1. This is again due to the decrease of P0 for increasing S which then moves
the mass of the distribution to larger populations. Thus, a system with η < 1 will have a number
distribution that is characteristically similar to the exponentially decreasing single chain distribution
and tells us that λf dominates over S. For a system with η > 1, the source events are more closely
spaced in time and the fission chains produced in source events will overlap, causing a building-up
effect about a centralized mean value (this is what causes the shift to a unimodal distribution due
to the decreasing likelihood of there being 0 neutrons in the system as time progresses).

50



Chapter 4

Full Multiplicity for Induced Fission
and Sources

In this chapter, we expand the model from the previous chapter to allow for more realistic physics
including neutron capture, neutron leakage, and multiplicity distributions for both induced fission
and source events. This will bring the reader to the forefront of being able to read classic papers,
such as Bell’s from 1963, as well as to write their own master equations and apply the MESA to
attempt to solve them. At the end of the chapter, we will include a discussion of the NMESA branch
of the MESA (the right column seen in Fig. 1.5) to give the reader a taste of a more practical solution
method and to hedge the effectiveness of certain approximations we will apply in the MESA of this
“full multiplicity” model.

4.1 The Model
The model for this chapter includes the following new physics:

• neutron capture (often called radiative capture or parasitic capture),

• neutron leakage from the system,

• full multiplicity distributions for induced fission events and source events.

We will see that these master equations are not outright solvable due to the full multiplicity distri-
butions. The issue will become apparent, in the forward case, when we attempt to solve the PGF
PDE using the Method of Characteristics. Similarly, we will hit a roadblock in the backward case
when trying to compute integrals showing up in the PGF solution process for both the single chain
and source equations. When we need to solve the single chain (forward and backward) cases, we
will make an approximation to the fission multiplicity distribution PGF (which we have not seen
explicitly yet) that will allow us to evaluate an integral. This approximation is called the Quadratic
Approximation and was first devised by Bell [9]. For the source cases, we will assume that the
source emits a single neutron per event. In both of these assumptions, we will see how well they
hold compared to reality, which tends to be relatively accurate for certain types of reactors.
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IFE, -1
n0, +ν n0s

n + 1 − ν

Capture, -1 n0 n + 1

Leakage, -1 n0 n + 1

No collisions n

n

SE, +ν n0s n − ν

No SE, 0 n0s n

Flow of
Time

t− ∆t t

mi

If

Figure 4.1: Forward formulation event tree for full induced fission and source multiplicity distri-
butions. Here ν = 0, 1, . . . , νxm, where x = {f, S} for IFEs and SEs, respectively, and νxm is the
maximum number of neutrons emitted per event of type-x.

4.2 Forward Formulation

4.2.1 Probability Balance & Master Equation
As before, we define the probabilistic quantity we wish to calculate:

Pn(t) = the probability of there existing n neutrons within the system at time t. (4.1)
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This definition is the same as Eq. 3.1, but we will need to account for the many new physical
interactions that may occur to the neutron population in the last collision interval.

To determine Pn(t), we use knowledge of the possible states the system could be occupying a
short time before t, given by t−∆t, and probability balance is conducted over the time domain:

If = [t−∆t, t], (4.2)

where the subscript f refers to this being the forward time interval. We assume ∆t is sufficiently
small enough that only a single source event or neutron collision may reasonably occur within it. In
constructing the probability balance, let us first state the possible events that may occur within the
short time interval If :

1. a neutron collides and is absorbed, causes an induced fission event (IFE), and ν neutrons are
emitted, where ν = 0, 1, . . . , νfm and νfm is the maximum number or neutrons emitted per IFE,

2. a source event occurs, emitting ν neutrons where ν = 0, 1, . . . , νSm and νSm is the maximum
number or neutrons emitted per SE,

3. a neutron collides and is captured,

4. a neutron leaks out of the system,

5. no event occurs (no neutrons collide with nuclei and no source events occur)

The event tree in Fig. 4.1 shows this list in action. In the figure, we see the event that may occur in
the far-left bubbles with the resultant number of neutrons that emerge, followed by the intermediary
state mi- the ith state that is connected to state n. Using the list above along with Fig. 4.1, we
write the probability balance in words as follows:

Pn(t) =

(
Probability of no source
event occurring in If

)
×
(

Probability that none of
the n n0s collide in If

)
×
(

Probability of being in
state n at time t−∆t

)
+

[(
Probability that 1 n0

is captured in If

)
+

(
Probability that 1 n0

leaks in If

)]
×
(

Probability of being in state
n+ 1 at time t−∆t

)
+

(
Probability of 1 source
event occurring in If

)
×
(

Probability of 0 n0s
being emitted

)
×
(

Probability of being in state
n at time t−∆t

)
+

(
Probability of 1 source
event occurring in If

)
×
(

Probability of 1 n0

being emitted

)
×
(

Probability of being in state
n− 1 at time t−∆t

)
...

+

(
Probability of 1 source
event occurring in If

)
×
(

Probability of νSm n0s
being emitted

)
×
(

Probability of being in state
n− νSm at time t−∆t

)
+

(
Probability of 1 n0

causing an IFE in If

)
×
(

Probability of 0 n0s
being emitted

)
×
(

Probability of being in state
n− 1 at time t−∆t

)
+

(
Probability of 1 n0

causing an IFE in If

)
×
(

Probability of 1 n0

being emitted

)
×
(

Probability of being in state
n at time t−∆t

)
...

+

(
Probability of 1 n0

causing an IFE in If

)
×
(

Probability of νfm n0s
being emitted

)
×
(

Probability of being in state
n+ 1− νfm at time t−∆t

)
(4.3)
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The first line concerns the probability that no event occurs and appears the same as the previous
version, Eq. 3.3 (we will have a different total reaction rate now, however). The second line shows
the capture and leakage events, where we note that we grouped the capture and leakage probabilities
together because they have the same intermediary state, mi = n+ 1. From the population balance
perspective, it does not matter which process causes the loss of one neutron (remember the Markov
property) just as long as we are in state n+ 1, then lose 1 neutron, which takes the system to state
n. We have written the source emission probabilities out to make it clear that each neutron number
emission following a SE has a different connected state. The reasoning is as follows: following a SE,
ν neutrons are born and thus the system gains ν neutrons. Thus the, system needs to be in state
n− ν is order for the +ν to cancel and bring the system to state n. For the IFE case, we must also
consider the loss of the neutron that causes the IFE by being absorbed into the nucleus it collides
with. Once that neutron is absorbed we then must account for the gain of ν neutrons following the
IFE. Notice how each event from the above list is multiplied by a connected (dependent) probabilistic
state. These connected states have already been defined for us with Eq. 4.1 where we need only
change the index and time argument to fix the description.

We may now start defining the probabilities to convert the probability balance from words to
math. We will walk through the same process as we did in the previous chapters so as to provide a
full walkthrough. Let us start with the source probabilities. The source, S, should be thought of as
“the probability of a source event occurring per unit time”, and thus we may define the probability
of a source event occurring in the time interval ∆t as:(

Probability of 1 source
event occurring in If

)
= S(t−∆t)∆t, (4.4)

where we are now allowing the source to be time-dependent and we must consider the source strength
at the beginning of If . From Eq. 4.4 and keeping in mind that ∆t is sufficiently small, we may
utilize the conservation of probability to determine:(

Probability of no source
event occurring in If

)
= 1− S(t−∆t)∆t. (4.5)

Next, we need to determine the probability that a neutron reacts in some manner. Recall that the
reaction rate of interaction x, λx, can be thought of as the “probability that event type x occurs per
unit time per neutron.” We note that this includes the two new processes of capture and leakage
which have reactions rates λc and λ`. Thus, for a single neutron propagating in the time interval
∆t, we have: (

Probability that 1
n0 interacts in If

)
=
[
λc(t−∆t) + λ`(t−∆t) + λf (t−∆t)

]
∆t

= λt(t−∆t)∆t,

(4.6)

where we have defined the total reaction rate:

λt = λc + λ` + λf . (4.7)

We include the leakage rate as part of the total reaction rate because it is a rate that is dependent on
the neutron population present within the system and it also causes a change in the population upon
the event occurring. Similar to how we arrived at Eq. 4.5, we use the conservation of probability
to determine the probability that one neutron does not interact in If as: 1 − λt∆t. Notice that
that expression is for a single neutron, and we therefore need to multiply 1− λt∆t to itself for each
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neutron present in the system. If no collisions/leakages have occurred in ∆t, then there must already
be n neutrons in the system at t−∆t. From this, we find:(

Probability that none of the
n n0s collide/leak in If

)
=
[
1− λt(t−∆t)∆t

]n
. (4.8)

Following that same multiplicative process, if we want to know the probability that 1 neutron is
captured or leaks from the system of the n+ 1 neutrons present, we may write:(

Probability that 1 of the n+ 1
n0s is captured or leaked in If

)
= (n+ 1)

[
λc(t−∆t) + λ`(t−∆t)

]
∆t. (4.9)

Similarly, the induced fission reaction rate may be calculated for the n + 1 − ν neutrons that are
present before the IFE occurs in ∆t:(

Probability of n+ 1− ν
n0s causing an IFE in If

)
= (n+ 1− ν)λf (t−∆t)∆t. (4.10)

For the SE and IFE multiplicity distributions, we simply need to recall that the probability of ν
neutrons being emitted following event type x is an experimentally derived quantity and can be
expressed simply as: (

Probability of ν n0s being
emitted from event type x

)
= qxν . (4.11)

Now let us address the connected state probabilities of Eq. 4.3. The first one is the “probability
of being in state n at time t−∆t”, and by comparing that statement to Eq. 4.1, we find that that is
equivalent to the quantity Pn(t−∆t). The connected state for the capture and leakage probabilities
is Pn+1(t−∆t) and the SE and IFE connected states follow in the same manner.

Assembling these connected states with Eqs. 4.4 through 4.11, we may write down the probability
balance for the full multiplicity model with capture and leakage:

Pn(t) =
[
1− S(t−∆t)∆t

][
1− λt(t−∆t)∆t

]n
Pn(t−∆t)

+ (n+ 1)
[
λc(t−∆t) + λ`(t−∆t)

]
∆tPn+1(t−∆t)

+ S(t−∆t)∆t

νSm∑
ν=0

qSν Pn−ν(t−∆t)

+ λf (t−∆t)∆t

νfm∑
ν=0

qfν (n+ 1− ν)Pn+1−ν(t−∆t).

(4.12)

We have consolidated all the SE and IFE emission probabilities into their respective sums.
Before continuing, we may rewrite the “no event” probability by expanding (1 − λt∆t)

n in a
Taylor series about λt∆t = 0 (suppressing time-dependence for brevity):

(1− λt∆t)n = 1− nλt∆t+
1

2
n(n− 1) (λt∆t)

2 − 1

6
n(n− 1)(n− 2) (λt∆t)

3
+ · · ·

= 1− nλt∆t+O
(

[∆t]
2
)
,

(4.13)

where O is the Big-O notation. We may then write:[
1− S(t−∆t)∆t

][
1− λt(t−∆t)∆t

]n
= 1−

[
S(t−∆t) + nλt(t−∆t)

]
∆t+O

(
[∆t]

2
)
. (4.14)
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With the probability balance, Eq. 4.12, we may rearrange by subtracting by Pn(t − ∆t) and
dividing by ∆t to find:

Pn(t)− Pn(t−∆t)

∆t
= −

[
S(t−∆t) + nλt(t−∆t)−O (∆t)

]
Pn(t−∆t)

+ (n+ 1)
[
λc(t−∆t) + λ`(t−∆t)

]
Pn+1(t−∆t)

+ S(t−∆t)

νSm∑
ν=0

qSν Pn−ν(t−∆t)

+ λf (t−∆t)

νfm∑
ν=0

qfν (n+ 1− ν)Pn+1−ν(t−∆t).

(4.15)

If we next take the limit as ∆t → 0, the LHS of Eq. 4.15 is simply the limit definition of a
derivative with respect to t. We then arrive at a linear first-order ordinary differential-difference
(DDE) equation satisfied by Pn(t):

dPn(t)

dt
= −

[
S(t) + nλt(t)

]
Pn(t) + (n+ 1)

[
λc(t) + λ`(t)

]
Pn+1(t)

+ S(t)

νSm∑
ν=0

qSν Pn−ν(t) + λf (t)

νfm∑
ν=0

qfν (n+ 1− ν)Pn+1−ν(t).

(4.16)

with n = 0, 1, 2, . . .. The initial condition is given by:

Pn(t = to) = δn,m (4.17)

where m is the initial number of neutrons within the system and δi,j is the Kronecker delta function.
Equation 4.16 is the Forward Master Equation (FME) for the model defined in Sec. 4.1 where we
have allowed for capture and leakage events and arbitrary neutron number emission from SEs and
IFEs. The FME describes the temporal change in the population distribution due to the effects
present on the RHS of the equation. The first term on the RHS is negative because those are loss
mechanisms that cause the population to leave state n and therefore cause the change over time
(derivative) of state n to decrease. The other terms on the RHS are “sources” that contribute to
state n from other states and therefore cause the derivative of state n to increase.

The system of equations for n = 0, 1, 2, . . . ,∞ is open, meaning that each equation is dependent
on the solution to the next highest DDE, due to the Pn+1 term (note that there is a Pn+1 also from
the IF sum when ν = 0). This is one of the features that drastically complicates solving this equation
because it requires solving the system of equations for all n simultaneously (remember there are an
infinite number of equations). Alternatively, and what has been done numerically in practice [19],
we may truncate the distribution at some large n = N by assuming PN+1 ≈ 0 which closes the
system, but this is only accurate for systems in which the neutron population is not growing (i.e.,
subcritical systems). As before, we vie to solve this open set of equations by converting it to a single
PDE satisfied by the probability generating function. We perform this transformation next.

4.2.2 Equation for the Probability Generating Function
In this section, we employ a transformation method on the Master equation which effectively consol-
idates the infinite number of differential-difference equations into a single equation for the transform
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function. The transform takes the form of the probability generating function (PGF). The PGF is
an attractive candidate because it is effectively a power series representation of the PDF, which has
a well-developed theory established for non-negative coefficients. If X is a discrete random variable
taking on values in the non-negative integers, i.e. {X ∈ Zx≥0}, then the PGF of X is defined as

G(z) = E
(
zX
)

=

∞∑
x=0

zxpx, (4.18)

where E(·) is the expectation operator, px is a probability distribution function of X and z is the
continuous transform variable. The PGF power series has absolute convergence for all complex
numbers z with |z| ≤ 1, but we will further restrict {z ∈ R|0 ≤ z ≤ 1}. We mention the relation
between G and the expectation operator because we will be using G to derive equations for the
moments of the distribution later.

If we specifically define the PGF for the FME, Eq. 4.16, as

G(z, t) =

∞∑
n=0

znPn(t), (4.19)

with the z-derivative given by:
∂G(z, t)

∂z
=

∞∑
n=0

nzn−1Pn(t). (4.20)

We may multiply Eq. 4.16 by zn and sum over all n to find

∞∑
n=0

zn
dPn(t)

dt
= − S(t)

∞∑
n=0

znPn(t)− λt(t)
∞∑
n=0

nznPn(t) + (λc(t) + λ`(t))

∞∑
n=0

(n+ 1)znPn+1(t)

+ S(t)

∞∑
n=0

zn
νSm∑
ν=0

qSν Pn−ν(t) + λf (t)

∞∑
n=0

zn
νfm∑
ν=0

qfν (n− ν + 1)Pn−ν+1(t).

(4.21)

We next simplify Eq. 4.21 term-by-term to find an equation for the PGF. It is clear that the left-hand
side of Eq. 4.21 may be treated as

∞∑
n=0

zn
dPn(t)

dt
=

∂

∂t

∞∑
n=0

znPn(t)

=
∂G(z, t)

∂t
,

(4.22)

and in a similar fashion, the first term on the right-hand side is simply

−S
∞∑
n=0

znPn(t) = −SG(z, t). (4.23)

57



The next term may be put into terms of G by recalling Eq. 4.20 and multiplying by z−1z:

−λt
∞∑
n=0

nznPn(t) = − λt
z

z

∞∑
n=0

nznPn(t)

= − λtz
∞∑
n=0

nzn−1Pn(t)

= − λtz
∂G

∂z
.

(4.24)

The capture and leakage term is treated by defining a new index m = n+ 1. Then n = m− 1 and
the index sum goes from 1 to ∞, however, since the m = 0 term will be non-contributing (will be
null), we may include it in the summation. Thus, we find

(λc + λ`)

∞∑
n=0

(n+ 1)znPn+1(t) = (λc + λ`)

∞∑
m=0

mzm−1Pm(t)

= (λc + λ`)
∂G

∂z
.

(4.25)

We handle the source term by defining an index m = n− ν, then n = m+ ν, giving zn = zmzν , and
we find:

S

∞∑
n=0

zn
νSm∑
ν=0

qSν Pn−ν(t) = S

∞∑
m=0

zmzν
νSm∑
ν=0

qSν Pm(t)

= S

 νSm∑
ν=0

zνqSν

 ∞∑
m=0

zmPm(t)

= Sg
S
(z)G(z, t),

(4.26)

where, in going from the first to the second line, we factored out the sum over ν as it is not dependent
on m and we recognize that Pm<0(t) = 0 and we have defined the PGF for the source multiplicity
distribution as:

g
S
(z) =

νSm∑
ν=0

zνqSν . (4.27)

Finally, we may simplify the induced fission term by defining an index m = n − ν + 1, then zn =
zm−1zν , and we find

λf

∞∑
n=0

zn
νfm∑
ν=0

qfν (n− ν + 1)Pn−ν+1(t) = λf

 νfm∑
ν=0

zνqfν

 ∞∑
m=0

mzm−1Pm(t)

= λfgf (z)
∂G

∂z
,

(4.28)

where g
f
(z) is the PGF for the induced fission multiplicity distribution

g
f
(z) =

νfm∑
ν=0

zνqfν . (4.29)
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Assembling the identities Eqs. 4.22 - 4.29, we arrive at a PDE satisfied by the PGF:

∂G(z, t)

∂t
=

[
− λt(t)z + λc(t) + λ`(t) + λf (t)g

f
(z)

]
∂G(z, t)

∂z
+ S(t)

[
g
S
(z)− 1

]
G(z, t). (4.30)

We may determine the initial condition of Eq. 4.30 by applying the PGF to Eq. 4.17 to find

G(z, 0) = zm, (4.31)

where m is the initial neutron population.
Equation 4.30 is a linear hyperbolic PDE of the forward PGF, which may be solved using the

Method of Characteristics under certain conditions. As expected, this PGF PDE is substantially
more complicated than the PGF PDE from the previous chapter, Eq. 3.21, due to the additional
physics we have included. It is easy to recover Eq. 3.21 by simply removing capture and leakage
and by setting qfν = δν,2 (i.e., 2 and only 2 neutrons per fission) and qSν = δν,1 (i.e., singlet-emitting
source). The newest features include the PGFs for the multiplicity distributions, gx(z), whose arrival
should come as no surprise when we realize that they are simply the transforms of the multiplicative
processes for SEs and IFEs. Additionally, one should keep in mind that gx(z) are essentially νxm-order
polynomials in z- this will become important in the next section.

4.2.3 Solutions to the PGF PDE
In this section, we seek analytical solutions to the PGF PDE, Eq. 4.30, restated here:

∂G(z, t)

∂t
= g(z, t)

∂G(z, t)

∂z
+ S

[
g
S
(z)− 1

]
G(z, t),

where we have defined the coefficient of the ∂G/∂z term to simplify the following analysis:

g(z, t) =

[
− λt(t)z + λc(t) + λ`(t) + λf (t)g

f
(z)

]
. (4.32)

In its current general form, Eq. 4.30 does not have a solution in known mathematical functions, but
we will steadfastly proceed by recognizing that we may attempt to find solutions using the Method
of Characteristics. This is done by comparing Eq. 4.30 with the total derivative of G with respect
to time,

dG

dt
=
∂G

∂z

dz

dt
+
∂G

∂t
. (4.33)

By inspection, the system of characteristic equations is obtained:

dz(t)

dt
= −g(z(t)) (4.34a)

dG(z(t), t)

dt
= S(t)

[
g
S

(
z(t)

)
− 1
]
G(z(t), t). (4.34b)

Equation 4.34b is an elementary first-order differential equation that is solved by separation of
variables followed by integration over the time domain to yield

G(z(t), t) = [z(to)]
m exp

{∫ t

to

dt′S(t′)
[
g
S

(
z(t′)

)
− 1
]}

, (4.35)
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where we are reminded that g
S
(z(t)), defined by Eq. 4.27, is an νSm-order polynomial in z. Depending

on the form of z(t), obtained by solving Eq. 4.34a, this may prove to be an incalculable integral in
and of itself. With that said, we see that Eq. 4.34a takes the integral form:∫ z(t)

z(to)

dz′
1

g(z′)
=

∫ z(t)

z(to)

dz′
1

−λtz′ + λc + λ` + λfgf (z′)
= −(t− to). (4.36)

Recalling Eq. 4.29, the definition of gf (z(t)), as being an νfm-order polynomial in z, this integral is
not solvable for polynomials greater than order 3, prompting us to explore several solution paths in
the remainder of this section.

There are effectively two ways of solving Eq. 4.30 by means of making a mathematical approxi-
mation to the equation itself or by restricting the physics of the problem in some way. Both of these
approaches vie to lessen the complexity of the characteristic equation, Eq. 4.34a, by lowering the
variable coefficient power to order two (recall this provided the Riccati/Bernoulli ODE, Eq. 3.24a,
for the BFM). We will only consider the mathematical approximation, namely the Quadratic Ap-
proximation, and we have already considered the physics approximation, the Binary Fission Model,
in the previous chapter. We could apply the BFM to this problem, but we leave that as an exercise,
and we proceed by apply the Quadratic Approximation.

4.2.4 The Quadratic Approximation
We wish to solve Eq. 4.34a by approximating the form of g(z(t)), defined by Eq. 4.32. This is
accomplished by expanding g in a Taylor series about z = 1 and retaining only up to the second
order terms; for this reason, this methodology is commonly referred to as the Quadratic Approxi-
mation (QA). Originally performed by Bell in obtaining the neutron number distribution for large
neutron populations [9], and later employed by Prinja and Souto [16] to extract the discrete number
distribution- both for the FME- we henceforth follow the same procedure as Prinja and Souto.

In advancing, we recall the definition of the total reaction rate, λt = 1/τ from Eq. 1.10c, and
the supplementary reaction rates as λx = px/τ , Eq. 4.32 may be rewritten as:

g(z) =
1

τ

−z + pc + p` + pf

νfm∑
ν=0

zνqfν

 .
If we now expand −z + pf

∑
ν z

νqfν in a Taylor series about z = 1, we find

−z + pf
∑
ν

zνqfν =

[
−z + pf

∑
ν

zνqfν

] ∣∣∣∣∣
z=1

+

[
−1 + pf

∑
ν

νzν−1qfν

] ∣∣∣∣∣
z=1

(z − 1)

+
pf
2!

∑
ν

ν(ν − 1)zν−2qfν

∣∣∣∣∣
z=1

(z − 1)2 + · · ·

= (−1 + pf ) + (−1 + pfν)(z − 1) +
pf (z − 1)2

2!

∑
ν

ν(ν − 1)qfν

+
pf (z − 1)3

3!

∑
ν

ν(ν − 1)(ν − 2)qfν + · · ·

Noting the identities k = pfν (from Eq. 1.7), ν(ν−1) · · · (ν−m+1) = ν!/(ν−m)!, and 1 = pf+pc+p`,
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we may write

g(z) =
1

τ

(k − 1)(z − 1) + pf

∞∑
m=2

νfm∑
ν=0

ν!

(ν −m)!
qfν

(z − 1)m

m!

 .
Further, by recognizing that for m > νfm the binomial coefficient in the above equation is zero, and
similarly for ν < m, we may rewrite g as

g(z) =
1

τ

(k − 1)(z − 1) + pf

νfm∑
m=2

νfm∑
ν=m

ν!

(ν −m)!
qfν

(z − 1)m

m!


=

1

τ

(k − 1)(z − 1) + pf

νfm∑
m=2

χm
(z − 1)m

m!

 (4.37)

where χm is defined as

χm =

νfm∑
ν=m

ν!

(ν −m)!
qfν . (4.38)

We have yet to make an approximation to g, but this is done now by truncating the sum in Eq. 4.37
at νfm = 2, giving us a quadratic polynomial in z:

g(z) ≈ 1

τ

[
(k − 1)(z − 1) + pfχ2

(z − 1)2

2

]
. (4.39)

This is known as the Quadratic Approximation, and it allows us to solve the characteristic equation
for z(t). Although we used the symbol νfm in the above when truncating, this does not mean we are
removing the effects of the higher neutron multiplets from our analysis. This is seen by recognizing
these higher emission probabilities may still be used when calculating χ2 in Eq. 4.38. This is crucial
because it allows us to consider the full multiplicity distribution and the approximation is that the
second factorial moment, χ2, sufficiently represents the induced fission propagation process. We
note the identities: χ0 = 1 is the zeroth moment of the multiplicity distribution (the normalization)
and χ1 = ν is the first moment, the mean. Also, we note that τ , pf , and k may be time-dependent,
but no loss of generality has been had up to this point.

4.2.5 Solution via the QA
With the QA in-hand, we proceed by solving the approximated form of Eq. 4.34a, by first introducing
the substitution

u(t) = z(t)− 1, (4.40)

along with the two variables:

α(t) =
k(t)− 1

τ(t)
, (4.41a)

χ′2(t) =
pf (t)χ2

τ(t)
, (4.41b)

to then find Eq. 4.34a as:

du(t)

dt
= −g(u(t), t) = −α(t)u(t)− χ′2(t)

2

[
u(t)

]2
. (4.42)
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The nonlinear ODE of the characteristic curve in the QA is of the Riccati-type (more precisely it is
a Bernoulli equation because it is homogeneous). Any Bernoulli equation of nonlinear order k can
be reduced to a linear ODE by making the substitution y = u1−k. Setting k = 2, we arrive at a
linear equation in y = 1/u:

dy

dt
= α(t)y(t) +

χ′2(t)

2
,

which is solved using the integrating factor technique over the time domain t′ ∈ [to, t]. An equation
for u(t) is ultimately acquired

1

u(t)
=

1

u(to)
exp

{∫ t

to

dt′α(t′)

}
+

∫ t

to

dt′
χ′2(t′)

2
exp

{∫ t

t′
dt′′α(t′′)

}
=

1

u(to)
a(t) + b(t) (4.43)

where we have defined

a(t) = exp

{∫ t

to

dt′α(t′)

}
(4.44a)

b(t) =

∫ t

to

dt′
χ′2(t′)

2
exp

{∫ t

t′
dt′′α(t′′)

}
. (4.44b)

We next insert Eq. 4.43 into the expression for G, Eq. 4.35, in order to solve the PGF equation,
Eq. 4.30, for which the final result will depend on the initial condition (i.e., the initial neutron
population). In terms of the substituted variable, u, the G characteristic equation solution becomes

G(u(t), t) = [u(to) + 1]m exp

{∫ t

to

dt′S(t′)
[
g
S

(
u(t′) + 1

)
− 1
]}

. (4.45)

We proceed by addressing the two primary cases that are examined in practice: the case of a single
initial neutron without a source present (which we have been referring to as the single chain case),
and the case of zero initial neutrons in the presence of a source.

Single Chain Case

For the case of a single initial neutron without a source present, we simply set S = 0 s−1 and we set
m = 1 in Eq. 4.45. This tells us that dG/dt = 0 (from Eq. 4.34b), and the PGF is constant along
the characteristic curve and is simply equal to the initial condition, i.e.,

G(u(t), t) = G(u(to), to) = 1 + u(to). (4.46)

Solving Eq. 4.43 for u(to) = a/(1/u− b) and recovering explicit z-dependence yields

G(z(t), t) = 1 +
a(t)

1
z−1 − b(t)

. (4.47)

Equation 4.47 is in the ideal form, and our next task will be to invert G to determine the single
chain neutron number distribution, discussed in Sec. 4.2.6. This is the solution obtained originally
by Bell [9] and later by Prinja & Souto [16].
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Source Case

The case of a source with no initial neutrons is, unsurprisingly, more involved than the single chain
case due to the retention of the exponential functional form of G. In reference to Eq. 4.45, we set
m = 0 to find

G(u(t), t) = exp


∫ t

to

dt′S(t′)

−1 +

νSm∑
ν=0

qSν

(
1 +

[
a(t′)
u(to)

+ b(t′)

]−1
)ν (4.48)

and we see that the source multiplicity distribution PGF introduces complications due to the νSm-
order power of the argument, 1 + u(t′). For this reason, the integral is not easily computed and we
therefore make the assumption that the source is:

• constant in time,

• and singlet emitting, i.e. qSν = δν,1.

After rearranging, this assumption dramatically simplifies Eq. 4.48:

G(u(t), t) = exp

S
∫ t

to

dt′
u(to)/a(t′)

1 + u(to)
b(t)
a(t)

 . (4.49)

At this time, we need to further assume χ′2 is time-independent such that b(t) can be simplified to
provide

G(u(t), t) = exp

{
Su(to)

∫ t

to

dt′
j(t′)

1 +
u(to)χ′2

2

∫ t′
to

dt′′j(t′′)

}
. (4.50)

where we have made the substitution j(t′) = 1/a(t′) = exp{
∫ to
t′

dt′′α(t′′)}. If we further define

J(t′) =
∫ t′
to

dt′′j(t′′), then dJ/dt′ = j(t′) and the integral may be further simplified and ultimately
solved: ∫ J(t′)

0

dJ
1

1 +
u(to)χ′2

2 J
=

2

u(to)χ′2
ln

[
1 +

u(to)χ
′
2

2

∫ t

to

dt′ exp

{∫ to

t′
dt′′α(t′′)

}]
.

This gives us the solution

G(u(t), t) =

[
1 +

χ′2
2

(
a(t)u

1− ub(t)

)∫ t

to

dt′ exp

{∫ to

t′
dt′′α(t′′)

}]η
, (4.51)

where we have eliminated u(to) and we have introduced the parameter, often called Bell’s parameter,

η =
2S

χ′2
. (4.52)

We may further simplify the Eq. 4.51 by recalling the definition of a(t), pushing it into the integral,
recognizing the relation to b(t), and converting back to terms of z to find

G(z(t), t) =
[
1−

(
z − 1

)
b(t)
]−η

. (4.53)
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As a reminder, Eq. 4.53 was obtained for the specific case of a singlet emitting source, where we
further assumed the source, S, and χ′2 to be time-independent (keep in mind that χ′2 is constant
when calculating b(t)). It was shown that we did not need to make an assumption on the form of
α(t), allowing us to maintain a general time-dependence on the system criticality. Equation 4.53 is
in the ideal form to invert G to recover the neutron number distribution in the presence of a source,
Pn(t), to be discussed in next.

4.2.6 Inversion of the PGF
In this section, we show how to invert the ascertained expressions for the forward PGFs to obtain the
neutron number distribution. The process is the same as before, but we show it now for completeness.
In essence, we vie to manipulate the PGF solutions to put them into a form that allows us to expand it
into a Taylor series about z = 0- from which, we will extract the number distributions by inspection.

Single Chain

In the application of the QA for the single chain case, we arrived at an approximate solution to Eq.
4.30 by truncating the Taylor series expansion of the characteristic equation for z at second order,
given by Eq. 4.47, restated and rearranged here:

G(z, t) = 1 +
(z − 1)a(t)

1− (z − 1)b(t)

= 1 +
(z − 1)a(t)

1 + b(t)

[
1− b(t)

1 + b(t)
z

]−1

. (4.54)

Since 0 ≤ b/(1 + b) ≤ 1 and 0 ≤ z ≤ 1, then 0 ≤ bz/(1 + b) ≤ 1, and we may therefore expand the
bracketed term in a Taylor series about z = 0 (which, by the way, is also the Binomial Theorem in
this instance); doing so provides

G(z, t) = 1 +
(z − 1)a(t)

1 + b(t)

∞∑
n=0

[
b(t)

1 + b(t)

]n
zn. (4.55)

Next, we absorb the (z − 1) factor into the summation,

G(z, t) = 1 +
a(t)

1 + b(t)

[ ∞∑
n=0

[
b(t)

1 + b(t)

]n
zn+1 −

∞∑
n=0

[
b(t)

1 + b(t)

]n
zn

]
,

and by shifting the index of the first summation, m = n+ 1, we find

G(z, t) = 1 +
a(t)

1 + b(t)

[ ∞∑
m=1

[
b(t)

1 + b(t)

]m−1

zm −
∞∑
n=0

[
b(t)

1 + b(t)

]n
zn

]
.

By isolating the n = 0 term in the second sum, the summation may be combined and we arrive at
the ultimate desired form of G:

G(z, t) = 1− a(t)

1 + b(t)
+

a(t)[
1 + b(t)

]2 ∞∑
n=1

[
b(t)

1 + b(t)

]n−1

zn. (4.56)
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Comparing Eq. 4.56 to the original definition of the generating function,

G(z, t) =

∞∑
n=0

Pn(t)zn,

we see that the extinction probability is already isolated and the remainder of the distribution may
be inferred accordingly:

P0(t) = 1− a(t)

1 + b(t)
(4.57a)

Pn(t) =
a(t)[

1 + b(t)
]2 [ b(t)

1 + b(t)

]n−1

, n = 1, 2, 3, . . . . (4.57b)

Equations 4.57a and 4.57b constitute the discrete neutron number distribution in the Quadratic
Approximation. First obtained by Prinja and Souto [16], this PDF is a natural generalization
to Bell’s single chain distribution [9]. For this reason, we refer to Eq. 4.57 as the Prinja-Souto
distribution for the single neutron chain number distribution.

In the Presence of a Source

We are now interested in inverting the forward PGF solution in the presence of a source, given by
Eq. 4.53. The process is wholly the same as for the single chain case, but the resulting distribution
is categorically different, as will be seen. Equation 4.53 is already in the ideal format after a simple
factorization,

G(z, t) =
[
1−

(
z − 1

)
b(t)
]−η

=
1(

1 + b(t)
)η [1− b(t)

1 + b(t)
z

]−η
, (4.58)

we may expand the bracketed term into a Taylor series about z = 0. In doing so, Eq. 4.58 becomes

G(z, t) =
1(

1 + b(t)
)η ∞∑

n=0

η(η + 1) · · · (η + n− 1)

m!

[
b(t)

1 + b(t)

]n
zn. (4.59)

The rising factorial of η may be written in terms of the Gamma function facilitated by the identity:

η(η + 1) · · · (η + n− 1) =
Γ(η + n)

Γ(η)
. (4.60)

As before, if we then compare Eq. 4.59 to the definition of the PGF, G(z, t) =
∑∞
n=0 Pn(t)zn, we

may readily extract the number distribution in the presence of a source:

Pn(t) =
1(

1 + b(t)
)η [Γ(η + n)

n! Γ(η)

]
·
[

b(t)

1 + b(t)

]n
, n = 0, 1, 2, . . .

=
η + n− 1

n
· b(t)

1 + b(t)
Pn−1(t) with P0(t) = (1 + b(t))−η,

(4.61)

where we have written Pn recursively to remove computation of the gamma function, which has
issues for large n. Equation 4.61 is the discrete neutron number PDF in the QA, first obtained by
Prinja and Souto [16]. As with the previous section for the single chain distribution, this PDF is a
generalization of Bell’s distribution [9] in the presence of a source. Equation 4.61 is referred to as
the Prinja-Souto distribution in the presence of a constant singlet-emitting neutron source.
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4.3 Backward Formulation
In this section, we consider the other primary formulation method for obtaining the neutron number
probability distribution function, in lumped phase space, referred to as the Backward Master Equa-
tion Formulation [18]. The probability balance is conducted over the first collision interval in the
backward formulation, as opposed to the forward formulation in which the balance is constructed
over the last collision interval. In constructing the balance in the forward setting, we determined
what states are connected to the state n and by what mechanisms will those states lead to state n
(i.e., capture, leakage, fission) over some short time interval. In the backward setting, we assume a
single neutron appears at some time and the balance is then conducted to account for all events the
neutron will undergo in a short time interval and then from those events, what are the connected
probabilistic states that will then lead to state n.

As a final supplemental contrast, in the forward approach there is no single initial state to
produce the balance, but the backward approach requires such. We then assert that a single neutron
is injected at the earlier time and conduct our balance over the first collision interval. With the
initial state being known, we are therefore unable to incorporate a randomly emitting source into the
balance as the solution loses uniqueness. Therefore, we will then need to perform a separate balance
that accounts for random source emissions. For this reason, we have separated this section into a
single neutron chain formulation followed by the auxiliary balance for the inclusion of a source.

4.3.1 Probability Balance & Master Equation
We define the time intervals of interest for the single chain and source probability balances:

Ib = [to, to + ∆to] (4.62a)

Icb = [to + ∆to, t] (4.62b)

where we see that the entire time interval, from introduction of the source at to to observation of
the system at t, is given by Ib + Icb . Also, we use the superscript c to denote the complement.

Single Chain

As was stated above, we first construct a probability balance for a single initial neutron introduced
into the system at some time to and sum all mutually exclusive events the neutron may experience
which will then lead to n neutrons within the system at some later time t, stated in words as:

Pn(t|to) = the probability of there existing n neutrons within the system at time t due
to the introduction of a single neutron at an earlier time to.

(4.63)

For the single initial neutron, the list of mutually exclusive events that occur in the first collision
interval, Ib, are:

1. the neutron does not collide with a nucleus composing the medium,

2. the neutron does collide, which results in two possible interactions:

(a) is captured and the chain ends,

(b) is absorbed and induces a fission, producing ν neutrons with probability qfν ,

3. or the neutron leaks from the system and the chain ends.
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Figure 4.2: Mutually exclusive events that a single neutron may experience in Ib followed by the
possible paths in the remaining time Icb that will result in n neutrons at time t.

Let us again proceed with a cautionary note. We assume ∆to is sufficiently small such that if a
collision occurs the resulting effects will not have time to interact with the system. Also, although
∆to is very small, the difference in time between to + ∆to and t (i.e. Icb ) is arbitrarily large. Thus,
there could be additional events that may occur in the remaining time Icb and we will need to
include that possibility in our probability balance. To further illustrate this, Fig. 4.2 shows the
events and how they may occur over the total time interval, where we note that the zig-zigs mean an
arbitrary passage of time and IFE stands for induced fission event. In this figure, we see the list of
events that may occur in Ib, followed by a passage of time in Icb where the neutron chain propagates
ultimately resulting in n neutrons at t. For the case of a neutron being captured or leaking, the
chain immediately ends and we have therefore not included ‘zig-zags’ on the state transitions as this
effect instantaneously takes place and the only contributing state is the empty state, n ≡ 0. For
the case of an IFE occurring in Ib, there will be an emission of ν neutrons with probability qfν and
those ν neutrons will propagate and each branch will produce a population n1, n2, . . . , nν such that
n1 + n2 + · · ·+ nν = n in order for that probability set to contribute to Pn(t|to). Also, the neutron
may not collide or leak in Ib, and it will therefore continue to travel through the system during Icb
whence it will eventually collide or leak, resulting in n neutrons at time t.
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The probability balance in words is then:

Pn(t|to) =

(
Probability the initial n0 does

not collide or leak in Ib

)
×
(
Probability the initial n0 interacts
in Icb , resulting in n neutrons at t

)
+

[(
Probability initial n0

is captured in Ib

)
+

(
Probability initial n0

leaks in Ib

)]
×
(

Probability of being in
state n ≡ 0 at time t

)
+

(
Probability initial n0

causes an IFE in Ib

)
×
[(

Probability of 0 n0s
being emitted

)
×
(

Probability of being in
state n ≡ 0 at time t

)
+

(
Probability of 1 n0

being emitted

)
×
(

Probability of being in state
n at time t due to that 1 n0

)
+

(
Probability of 2 n0s

being emitted

)
×
(

Probability of being in state
n at time t due to those 2 n0s

)
...

+

(
Probability of νfm n0s

being emitted

)
×
(

Probability of being in state n
at time t due to those νfm n0s

)]
(4.64)

We can define the probability of a collision occurring in Ib by noting the definition of the total
reaction rate as “the probability per neutron per unit time that a collision or leakage will occur,”
which is written as: (

Probability initial n0

collides or leaks in Ib

)
= λt(to)∆to, (4.65)

where the total reaction rate is taken at the beginning of the time interval Ib and is defined as:

λt = λc + λ` + λf . (4.66)

It follows then that the probability of not colliding in Ib is:(
Probability initial n0 does
not collide or leak in Ib

)
= 1− λt(to)∆to. (4.67)

Additionally, the probability the initial neutron may be captured, leak, or induce a fission in Ib is
given by λc(to)∆to, λ`(to)∆to, and λf (to)∆to, respectively. In the event that the chain dies in Ib,
we know there will be 0 neutrons at time t due to that initial neutron and therefore the probability
of there being 0 neutrons at t is certain:(

Probability of being in
state n ≡ 0 at time t

)
= δn,0, (4.68)

where δn,0 is the Kronecker delta. Thus, this term only appears for the equation where n = 0, i.e.
the LHS of Eq. 4.64 is P0(t|to).

Next, we focus on the multiplication process following an IFE. From the multiplicity distribution,
we know “the probability of ν neutrons being emitted” following an IFE from experimental data:(

Probability of ν n0s
being emitted

)
= qfν , (4.69)
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with ν = 0, 1, . . . , νfm. We then need to consider the events that follow the emission of the fission
neutrons and how they probabilistically propagate in Icb . Starting with the emission of a single
neutron, we then require that single neutron, emitted at time to + ∆to, to result in n neutrons at t
and thus the connected state probability is Pn(t|to + ∆to). For the case of 2 neutrons being emitted
from a fission at time to+∆to, we suppose one of those neutrons results in n1 neutrons at time t and
the other results in n2 neutrons at time t such that the sum of those two branches is n1 + n2 = n.
Thus, the connected state is a combination of two states Pn1(t|to + ∆to) × Pn2(t|to + ∆to) and,
because n1 and n2 can be any combination of populations less than or equal to n, we must sum over
those possible combinations to find:(

Probability those 2 n0s produce n1 and
n2 n0s, such that n1 + n2 = n, in Icb

)
=

∑
n1+n2=n

Pn1
(t|to + ∆to)Pn2

(t|to + ∆to). (4.70)

For now, we will keep the summation notation that we have written above, but this sum is really a
double sum over all possible combinations of n1 and n2 that satisfy the condition n1 + n2 = n. For
ν neutrons being emitted in a fission at time to + ∆to, we write the following:(

Probability the ν n0s produce n1, n2, . . . nν
n0s, such that n1 + n2 + · · ·+ nν = n, in Icb

)
=

∑
n1+n2+
···+nν=n

ν∏
ν′=1

Pnν′ (t|to + ∆to), (4.71)

where the sum is really a ν-tuple sum where the condition
∑ν
i=1 ni = n is satisfied for a given index

value. Finally, the entirety of the second bracketed term of Eq. 4.64 can be written as a sum over
all ν from 0 to νfm with that sum being applied to Eq. 4.71, i.e.,

νfm∑
ν=0

qfν
∑

n1+...+nν=n

ν∏
ν′=1

Pnν′ (t|to + ∆to).

Assembling all of the above, we convert Eq. 4.64 into the Chapman-Kolmogorov equation for the
first collision interval probability balance for an initial neutron:

Pn(t|to) =
[
1− λt(to)∆to

]
Pn(t|to + ∆to) +

[
λc(to) + λ`(to)

]
∆toδn,0

+ λf (to)∆to

νfm∑
ν=0

qfν
∑

n1+···+nν=n

ν∏
ν′=1

Pnν′ (t|to + ∆to).
(4.72)

Next, we divide by ∆to and subtract Pn(t|to + ∆to) to find:

−Pn(t|to + ∆to)− Pn(t|to)
∆to

= − λt(to)Pn(t|to + ∆to) +
[
λc(to) + λ`(to)

]
δn,0

+ λf (to)

νfm∑
ν=0

qfν
∑

n1+···+nν=n

ν∏
ν′=1

Pnν′ (t|to + ∆to).

(4.73)

On the LHS, we have placed the Pn(t|to + ∆to) in front of the Pn(t|to) and if we now evaluate the
limit as ∆to → 0, the LHS becomes the derivative of Pn(t|to) with respect to to, and we thus have:

−∂Pn(t|to)
∂to

= −λt(to)Pn(t|to) +
[
λc(to) + λ`(to)

]
δn,0 + λf (to)

νfm∑
ν=0

qfν
∑

n1+···+nν=n

ν∏
ν′=1

Pnν′ (t|to),

(4.74)
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Figure 4.3: Mutually exclusive events that may occur in the backward formulation with a source
that emits arbitrary multiplets of neutrons per source event.

with n = 0, 1, 2, . . .. We have obtained the backward master equation for the neutron number
distribution due to the introduction of a single neutron at time to in a neutron-multiplying system.
The ‘final’ condition is:

lim
to→t

Pn(t|to) = δn,1 (4.75)

where δi,j is the Kronecker delta function. This condition tells us that as we bring the neutron
injection time to up to the time of observation t, the probability of there being one neutron in the
system is guaranteed.

A difference between this equation and that of the FME, Eq. 3.13 with S = 0, is that the BME is
νfm-order nonlinear (due to the products Pn1Pn2 · · ·Pn

ν
f
m

). This nonlinearity has appeared because
we need to consider all the possible independent probabilistic combinations that will result in n
neutrons at t due to the νfm independent chains produced in the IFE in the first collision interval.
This is a natural generalization of the BFM model of Chapter 3, Eq. 3.50, which can be obtained
by simply setting λc = λ` = 0 and qfν = δν,2.

Source

The probability balance and BME derivation for the source case proceeds by defining the probabilistic
quantity of interest:

Θn(t|to) = the probability of there existing n neutrons within the system at time t due
to the introduction of a source of strength S at an earlier time to.

(4.76)

Let us first consider the events that may take place in the first collision interval Ib, from which we
will be able to write down the probability balance in words. The list of mutually exclusive events
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that occur in the first collision interval, Ib, are the same as before:

1. No source event occurs

2. A source event occurs, producing ν neutrons.

Note that we assume there are initially zero neutrons within the system and thus no neutron interac-
tions/collisions can occur. Once again, recall ∆to is sufficiently small such that only one event may
occur in ∆to. We now need to consider the possible pathways stemming from the list above that may
lead to the state-space n at time t. In other words, given the two events that may occur in Ib, what
consequential events will occur in Icb that will lead to n neutrons at t. Using Fig. 4.3, we see that if
there is no source event (SE) in Ib, then there must be a collection of source events in Icb that lead to
n neutrons at t. If there is a SE, then any number from 1 to νSm neutrons are emitted and we there-
fore must consider that neutron’s progeny (i.e., the neutrons produced in the fission chain) resulting
in n1, n2, . . . , nνSm neutrons as well as subsequent SEs resulting in m = n − n1 − n2 − · · · − nνSm−1

neutrons. Note here that n = m + n1 + n2 + · · · + nνSm , because if it does not then this particular
set of events will not contribute to the LHS of Eq. 4.76. We also note that we do not consider the
emission of 0 neutrons from a source event as that does not change the state of the system and begs
the question, “if a source event does not emit a neutron, is it really a neutron source event?” (of
course we would need to consider this event if we were keeping track of photons produced, energy
deposited, etc.).

With this, we may define a probability balance in words:

Θn(t|to) =

(
Probability of no SE
occurring in Ib

)
×

 Probability of subsequent
SEs occurring in Icb ,
resulting in n n0s at t

+

(
Probability of a SE

occurring in Ib

)
×

(Probability that
1 n0 is emitted

)
×

 Probability that
1 n0 produces
n1 n0s in Icb

×
 Probability of subsequent SEs

occurring in Icb , resulting in
m = n− n1 n0s at t


+

(
Probability that
2 n0s are emitted

)
×

 Probability those
2 n0s produce
n1, n2 n0s in Icb

×
 Probability of subsequent SEs

occurring in Icb , resulting in
m = n− n1 − n2 n0s at t


...

+

(
Probability that
νSm n0s are emitted

)
×

 Probability those
νSm n0s produce

n1, . . . , nνSm n0s in Icb

×
 Probability of subsequent SEs

occurring in Icb , resulting in
m = n− n1 − . . .− nνSm n0s at t

.
(4.77)

Just as before, we can easily define the probability of a source event occurring in the short time ∆to
by recalling that the source, S, is defined as ‘the probability of a source event occurring per unit
time’, which results in the following:(

Probability of a SE
occurring in Ib

)
= S(to)∆to (4.78)

Next, we may define the complement of Eq. 4.78 using the conservation of probability to find:(
Probability of no SE

occurring in Ib

)
= 1− S(to)∆to. (4.79)
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In the event of a SE, we need to consider the probability of ν-tuplet emission, given by(
Probability that
ν n0s are emitted

)
= qSν . (4.80)

Next, we need to consider the events that may occur in Icb that will result in n neutrons at t. Let
us first consider the ‘probability of subsequent SEs occurring in Icb resulting in n n0s at t,’ which is
given by Θn(t|to + ∆to). Similarly, the ‘probability of subsequent SEs occurring in Icb resulting in
m neutrons at t’ is Θm(t|to + ∆to).

Finally, we must consider the progeny of the SE that occurred in Ib. For the case of a single
neutron produced in the first SE, that neutron is born at time to + ∆to, propagates in Icb , and
eventually results in n1 = n − m neutrons at t. The given probability of this outcome is simply
Pn1

(t|to + ∆to), the single chain solution. For 2 neutrons emitted in the first SE, each of those
neutrons is born at to + ∆to and will result in two branches with populations n1, n2 at t such that
n = m + n1 + n2 with probabilities Pn1

(t|to + ∆to) and Pn2
(t|to + ∆to). As there could be many

combinations of n1, n2, and m that satisfy n = m+n1 +n2, we must sum over all these combinations
to find:(

Probability the 2 n0s produce n1, n2

n0s, such that m+ n1 + n2 = n, in Icb

)
=

∑
m+n1+n2=n

Θm(t|to+∆to)Pn1
(t|to+∆to)Pn2

(t|to+∆to),

(4.81)
where the sum is actually a triple sum but we leave it as is for convenience. For the case of ν
neutrons emitted, the above logic holds and we would have the same structure as above but with a
product of Pn1 , . . . Pnν . Thus, to find the entire bracketed term of Eq. 4.77, we sum from ν = 0 to
ν = νSm to find:

νSm∑
ν=0

qSν
∑

m+n1+...+nν=n

Θm(t|to + ∆to)

ν∏
ν′=1

Pnν′ (t|to + ∆to).

Assembling these together, we obtain the Chapman-Kolmogorov equation for the first collision in-
terval probability balance describing a neutron source in an infinite medium:

Θn(t|to) =
[
1− S(to)∆to

]
Θn(t|to + ∆to)

+ S(to)∆to

νSm∑
ν=0

qSν
∑

m+n1+...+nν=n

Θm(t|to + ∆to)

ν∏
ν′=1

Pnν′ (t|to + ∆to).
(4.82)

Next, we divide by ∆to and subtract Θn(t|to + ∆to) to find:

−Θn(t|to + ∆to)−Θn(t|to)
∆to

= − S(to)Θn(t|to + ∆to)

+ S(to)

νSm∑
ν=0

qSν
∑

m+n1+...+nν=n

Θm(t|to + ∆to)

ν∏
ν′=1

Pnν′ (t|to + ∆to).

(4.83)

If we now evaluate the limit as ∆to → 0, the LHS becomes the derivative of Θn(t|to) with respect
to to, and we have:

−∂Θn(t|to)
∂to

= −S(to)Θn(t|to) + S(to)

νSm∑
ν=0

qSν
∑

m+n1+...+nν=n

Θm(t|to)
ν∏

ν′=1

Pnν′ (t|to) (4.84)
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with n = 0, 1, 2, . . .. This equation is the backward master equation for the neutron number distri-
bution in the presence of a neutron source in an infinite medium. The ‘final’ condition, for which
there are zero neutrons in the system at time to, is given by

lim
to→t

Θn(t|to) = δn,0 (4.85)

where δi,j is the Kronecker delta function.
As with the single chain case, we see Eq. 4.84 is substantially more complex than the previous

BMEs for a source. We note, however, that this BME is still linear in Θn, just like Eq. 3.58. The
additional physics create complexities in the single chain solution itself (see Eq. 4.74) and in the
branching possibilities from the first source event that occurs in Ib.

4.3.2 Equation for the Probability Generating Function
The Single Chain Backward PGF Equation

We now define the single chain backward PGF:

G(z, t|to) =

∞∑
n=0

znPn(t|to), (4.86)

where it is clear that the backward PGF has a dependence on the neutron introduction time, t < tf ,
and this symbolism should be easily distinguishable from the forward PGF, Eq. 4.19, for this reason.
To obtain an equation for the single chain backward PGF, we multiply Eq. 4.74 by zn and sum over
all n to find

−
∞∑
n=0

zn
∂Pn(t|to)
∂to

= − λt(to)
∞∑
n=0

znPn(t|to) +
[
λc(to) + λ`(to)

] ∞∑
n=0

znδn,0

+ λf (to)

∞∑
n=0

zn
νfm∑
ν=0

qfν
∑

n1+...+nν=n

ν∏
ν′=1

Pnν′ (t|to).
(4.87)

We will simplify term-by-term; the LHS of Eq. 4.87 is then

−
∞∑
n=0

zn
∂Pn(tf |t)

∂t
= − ∂

∂to

∞∑
n=0

znPn(t|to)

= −∂G(z, t|to)
∂to

,

(4.88)

and the first term on the RHS is simple to transform

−λt
∞∑
n=0

znPn(t|to) = −λtG(z, t|to). (4.89)

The empty-state contribution is simply[
λc + λ`

] ∞∑
n=0

znδn,0 = λc + λ` (4.90)
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because the only contributing term in the sum is n = 0.
The nonlinear fission branching terms require additional involvement to put into terms of the

backward PGF. Observing that the zn and the sum over n may be pushed through to the combina-
torial sum, we analyze the following:

Iν(z, t|to) =

∞∑
n=0

zn
∑

n1+...+nν=n

ν∏
ν′=1

Pnν′ (t|to)

=

∞∑
n=0

zn
∞∑

n1=0

Pn1

∞∑
n2=0

Pn2
· · ·

∞∑
nν=0

Pnν , n1 + n2 + · · ·+ nν = n

=

∞∑
n1=0

Pn1

∞∑
n2=0

Pn2
· · ·

∞∑
nν−1=0

Pnν−1

∞∑
n=0

znPn−(n1+n2+...nν−1), (4.91)

where we recognize that as we push the sum over n through each ni summation, we set the values
of the ni that satisfy the requirement that

∑
i ni = n, and by the pushing through the final nν sum,

there is only one number that will satisfy the above requirement, and we then lose the sum over nν .
By assigning a new index m = n − (n1 + n2 + . . . nν−1), inserting into Eq. 4.91, rearranging, and
noting that Pm<0 = 0, we obtain

Iν(z, t|to) =

∞∑
n1=0

zn1Pn1

∞∑
n2=0

zn2Pn2 · · ·
∞∑

nν−1=0

znν−1Pnν−1

∞∑
m=0

zmPm

=
[
G(z, t|to)

]ν
. (4.92)

The equation for the backward PGF is finally procured:

−∂G(z, t|to)
∂to

= −λt(to)G(z, t|to) + λc(to) + λ`(to) + λf (to)

νfm∑
ν=0

qfν

[
G(z, t|to)

]ν
, (4.93)

with the final condition, found by applying Eq. 4.86 to Eq. 4.75, is

lim
to→t

G(z, t|to) = z. (4.94)

Equation 4.93 is a nonlinear PDE whose solution may be obtained, for a set value of z, by integrating
backward in time starting at t′ = t and ending at t′ = to. In the next section, Sec. 4.3.3, we will show
how to solve this equation under certain conditions. First, we will introduce the complementary PGF
that converts Eq. 4.93 into a more convenient form, and we will then obtain the separate source
PGF equations.

As is historically customary, we define the complementary backward single chain PGF

G(z, t|to) = 1−G(z, t|to), (4.95)

which permits more convenient forms of the backward single chain PGF equation [21, 18]. By
inserting Eq. 4.95 into Eq. 4.93, we find

∂G(z, t|to)
∂to

= −λt(to)
[
1− G(z, t|to)

]
+ λc(to) + λ`(to) + λf (to)

νfm∑
ν=0

qfν

[
1− G(z, t|to)

]ν
, (4.96)
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with final condition
lim
to→t
G(z, t|to) = 1− z. (4.97)

Obviously, this does not immediately provide us with a satisfactory simplification, prompting us to
analyze the nonlinear terms. If we apply the Binomial Theorem to the nonlinear terms, we find

νfm∑
ν=0

qfν

[
1− G(z, t|to)

]ν
=

νfm∑
ν=0

qfν

ν∑
i=0

(−1)i
ν!

(ν − i)!i!
[
G(z, t|to)

]i
=

νfm∑
i=0

(−1)i

i!
Gi

νfm∑
ν=i

ν!

(ν − i)!q
f
ν

=

νfm∑
i=0

(−1)i

i!
χiGi, (4.98)

where we have defined the the factorial moments of the induced fission multiplicity distribution as

χi =

νfm∑
ν=i

ν!

(ν − i)!q
f
ν , (4.99)

which are identical to the factorial moments, Eq. 4.38, obtained in the process of applying the
Quadratic Approximation in Sec. 4.2.4. From this, and using −λf = λc + λ` − λt, we obtain an
equation for G in the desired form

∂G(z, t|to)
∂to

= λt(to)G(z, t|to) + λf (to)

−1 +

νfm∑
ν=0

(−1)ν

ν!
χν

[
G(z, t|to)

]ν , (4.100)

with final condition given by Eq. 4.97. Equation 4.100 is in a useful form because we will be interested
in specific probability quantities, such as the survival probability. The survival probability is the
probability that a single neutron chain has survived up to a certain point in time and is useful in
quantifying how safe a reactor might be. To avoid a lengthy digression, but to justify the introduction
of Eq. 4.95, we simply point out that the survival probability may be extracted from G by setting
z = 0, such that G(0, t|to) = PS(t|to), and the form of Eq. 4.95 does not change.

The Source Backward PGF Equation

For a constant randomly emitting neutron source, we define the PGF as:

H(z, t|to) =

∞∑
n=0

znΘn(t|to). (4.101)

Multiplying Eq. 4.84 by zn, summing over all n, and applying similar manipulations as the single
chain case, we find H to satisfy the linear PDE:

−∂H(z, t|to)
∂to

= S(to)

−1 +

νSm∑
ν=0

qSν
[
G(z, t|to)

]νH(z, t|to), (4.102)

with final condition given by
lim
to→t

H(z, t|to) = 1. (4.103)
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4.3.3 Solutions to the PGF PDE
Single Chain

Equation 4.100 can be solved using the MoC (with some approximations), and we obtain the char-
acteristic system by writing down the total derivative of G with respect to to:

dG
dto

=
∂G
∂z

dz

dto
+
∂G
∂to

. (4.104)

Comparing this expression to Eq. 4.100, we may extract the characteristic system:

dz

dto
= 0 (4.105a)

dG
dto

=λt(to)G(z, t|to)− λf (to) + λf (to)

νfm∑
ν=0

(−1)ν

ν!
χν

[
G(z, t|to)

]ν
. (4.105b)

Equation 4.105a informs us that z is a constant along the characteristic and therefore not a function
of to.

At first glance, Eq. 4.105b does not provide much information, but we have at least simplified the
PDE to an ODE as a start. This is where we must once again employ the Quadratic Approximation to
coax out a solution for G. In the Forward Formulation (FF), the QA was applied to the characteristic
ODE for dz/dt, Eq. 4.34a, but we do not have such an equation here (because dz/dto = 0). Instead
for the Backward Formulation (BF), we must apply a truncation to the equation for G, the single
chain PGF solution. This is an interesting correspondence that is worth mentioning here. For the
FF, the PGF PDE, Eq. 4.30, has single chain physics and source physics encapsulated in a single
equation and the single chain effects are expressed in the coefficient of ∂G/ ∂z, given by g(z, t) (Eq.
4.32). Additionally, the FF characteristic equation for the solution, dG/dz, has the source physics
with the single chain physics folded into the integral of Eq. 4.45. For the BF, the single chain
physics are completely encapsulated in the entire PGF PDE, Eq. 4.100, with a separate PGF PDE
for H, Eq. 4.102, to account for source effects (with the single chain physics once again folded in).
With this is mind, this correspondence is expected as it is by design how the two formulations are
related.

Proceeding, the QA for the BF is applied by truncating the nonlinear summation of Eq. 4.105b
at second order, i.e., set νfm = 2 in the upper limit. As we mentioned in the FF QA, we must remain
cautious that we are not setting νfm = 2 in our data and we can (and should) still use the entire
multiplicity distribution to calculate χ2. Doing so, Eq. 4.105b becomes:

dG(z, t|to)
dto

= λtG(z, t|to)− λf + λfχ0 − λfχ1G +
λfχ2

2
G2, (4.106)

which can be simplified by recalling χ0 = 1, χ1 = ν, χ′2 = λfχ2, and λt − νλf = −α to find

−dG(z, t|to)
dto

= α(to)G(z, t|to)−
χ′2(to)

2

[
G(z, t|to)

]2
. (4.107)

Equation 4.107 is immediately recognized as a second-order Bernoulli ODE (a homogeneous Riccati
equation) which has an analytical solution. Introducing the transformation y = 1/G, Eq. 4.107 is
reduced to an inhomogeneous linear first-order ODE

dy(z, t|to)
dto

= α(to)y(z, t|to)−
χ′2(to)

2
, (4.108)
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which is quickly solved using the integrating factor technique and integrating backwards in time.
We eventually arrive at an expression for G:

1

G(z, t|to)
=

1

G(z, t|t) exp

{∫ to

t

dt′α(t′)

}
−
∫ to

t

dt′
χ′2(t′)

2
exp

{∫ to

t′
dt′′α(t′′)

}
=

1

1− z ao(t|to)− bo(t|to) (4.109)

where we have inserted the final condition G(z, t|to = t) = 1− z and we have defined

ao(t|to) = exp

{∫ to

t

dt′α(t′)

}
= exp

{
−
∫ t

to

dt′α(t′)

} (4.110a)

bo(t|to) =

∫ to

t

dt′
χ′2(t′)

2
exp

{∫ to

t′
dt′′α(t′′)

}
= −

∫ t

to

dt′
χ′2(t′)

2
exp

{
−
∫ t′

to

dt′′α(t′′)

} (4.110b)

which can be thought of as the backward analogs to Eqs. 4.44a and 4.44b. With that said, we state
the relationship between the forward a, b and backward ao, bo:

ao(t|to) =
1

a(t)
(4.111a)

bo(t|to) = −ao(t|to)b(t)

= −a(t)

b(t)
.

(4.111b)

From this, we may write the backward G in terms of the forward coefficients a, b:

1

G(z, t|to)
=

1

a(t)

[
1

1− z + b(t)

]
. (4.112)

Reverting to the original PGF, we obtain a solution to Eq. 4.93, in the Quadratic Approximation:

G(z, t|to) = 1− 1
ao(t|to)

1−z − bo(t|to)

= 1 +
a(t)

1
z−1 − b(t)

,

(4.113)

which is clearly equivalent to forward solution for G given by Eq. 4.47.

Source

Equation 4.102 is a linear separable PDE which which is easily solved by integrating backwards in
time to find a closed-form expression of H which is dependent on the single chain PGF, G,

H(z, t|to) = exp

−
∫ to

t

dt′ S(t′)

−1 +

νSm∑
ν=0

qSν
[
G (z, t|t′)

]ν . (4.114)
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From Eq. 4.114, we may insert the single chain PGF, G, and then attempt to evaluate the integral in
the exponential. We consider the source to be constant in time and singlet emitting, i.e. qSν = δν,1,
such that we only have a first-order power of G as part of the integrand. This reduces Eq. 4.114
accordingly:

H(z, t|to) = exp

{
−S

∫ to

t

dt′
[
G(z, t|t′)− 1

]}
. (4.115)

Noting Eq. 4.113 solved for G − 1, we may rewrite Eq. 4.115 as H = exp{+SI}, where I is the
integral of −(G− 1). The integral in the exponential is computable if we assume that χ′2 is constant
with respect to time. For such a case, the integral takes the form:

I =

∫ to

t

dt′
[

1

1− z ao(t|t
′)− bo(t|t′)

]−1

= (1− z)
∫ to

t

dt′
1/ao(t|t′)

1− (1− z) bo(t|t′)
ao(t|t′)

,

where we keep the notation in terms of the backward ao, bo to give the reader the full ‘backward
experience’. The ratio in the denominator can be simplified as follows:

bo(t|t′)
ao(t|t′)

=
χ′2
2

exp

{
−
∫ t′

t

dxα(x)

}∫ t′

t

dw exp

{∫ t′

w

dxα(x)

}

=
χ′2
2

∫ t′

t

dw
1

ao(t|w)
. (4.116)

Then, by making the substitutions jo(t|t′) = exp{−
∫ t′
t

dxα(x)} = 1/ao(t|t′) and Jo(t|t′) =
∫ t′
t

dxjo(t|x),
the integral inherits a simplistic form:

I = (1− z)
∫ to

t

dt′
jo(t|t′)

1− (1− z)χ′22
∫ t′
t

dt′′jo(t|t′′)

= (1− z)
∫ Jo(t|to)

0

dJo
1

1− (1− z)χ′22 Jo

= − 2

χ′2
ln

[
1− (1− z)χ

′
2

2

∫ to

t

dt′
1

ao(t|t′)

]
.

This leads to a solution to the backward PGF equation for a singlet emitting source where we applied
the QA to obtain the supplementary single chain PGF solution:

H(z, t|to) =

(
1− (1− z) bo(t|to)

ao(t|to)

)−η
=
[
1− (z − 1)b(t)

]−η (4.117)

where η = 2S/χ′2 and we used Eqs. 4.111 to express H in terms of the forward coefficient b; from
which we see the second line of Eq. 4.117 is exactly equivalent to Eq. 4.53 for the forward source
PGF. Given these solutions for the single chain and in the presence of a source, Eqs. 4.113 and
4.117, respectively, we are now prepared to invert these expressions to obtain the neutron number
PDFs.
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4.3.4 Inversion of the PGF
In this section, we show how to invert the expressions we obtained for the backward PGFs in the
Quadratic Approximation. The process is the same as in Sec. 4.2.6 for which we inverted the forward
PGF expressions. We will keep the notation in the backward coefficients for ao, bo to give the reader
the backward perspective.

Single Chain

To invert the backward PGF for an individual neutron chain, we begin by rearranging Eq. 4.113:

G(z, t|to) = 1− 1− z
ao(t|to)− (1− z)bo(t|to)

=
ao + |bo| − 1

ao + |bo|(1− z)
− (1− |bo|)z
ao + |bo|(1− z)

=
ao + |bo| − 1

ao + |bo|

[
1− |bo|

ao + |bo|
z

]−1

− (1− |bo|)z
ao + |bo|

[
1− |bo|

ao + |bo|
z

]−1

(4.118)

where ao(t|to) and bo(t|to) are defined by Eqs. 4.110a and 4.110b, respectively, and we have taken
advantage of the fact that bo(t|to) < 0 for all to < t. By expanding the bracketed terms of Eq. 4.118
into a Taylor series about z = 0, pushing the z factor of the second term into the expansion and
shifting the index appropriately, we find

G(z, t|to) =
ao + |bo| − 1

ao + |bo|
∞∑
n=0

( |bo|
ao + |bo|

)n
zn − 1− |bo|

ao + |bo|
∞∑
n=1

( |bo|
ao + |bo|

)n−1

zn

=
ao + |bo| − 1

ao + |bo|
+

ao
|bo|(ao + |bo|)

∞∑
n=1

( |bo|
ao + |bo|

)n
zn. (4.119)

By comparing Eq. 4.119 to the definition: G(z, t|to) =
∑∞
n=0 Pn(t|to)zn, we find the extinction

probability has been naturally separated and the remainder of the distribution is extracted by
inspection to find:

P0(t|to) = 1− 1

ao(t|to)− bo(t|to)

= 1− a(t)

1 + b(t)

(4.120a)

Pn(t|to) = ao(t|to)
[|bo(t|to)|]n−1

[ao(t|to)− bo(t|to)]n+1

=
a(t)[

1 + b(t)
]2 [ b(t)

1 + b(t)

]n−1 (4.120b)

where n = 1, 2, 3, . . . in Eq. 4.120b and we have transformed the solution to the forward coefficients
a, b to demonstrate the functional equivalence between the two formulation’s end results.

Equations 4.120a and 4.120b constitute the discrete neutron number distribution for a single
neutron chain obtained from the complementary PGF equation in the Quadratic Approximation.
Recalling that the operational variable in the backward formulation is the time the initial neu-
tron is injected, we see that, from Eqs. 4.110a and 4.110b, the limits limto→t ao(t|to) = 1 and
limto→t bo(t|to) = 0. From these limits, the final condition imposed on the distribution is satisfied
because limto→t P0(t|to) = 0 and limto→t Pn(t|to) = δn,1 (using the identity 00 = 1).
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Table 4.1: Fast neutron (14 MeV) multiplicity distribution data for a 235U metal system. Data
taken from [42].

qf0 qf1 qf2 qf3 qf4 qf5 qf6 qf7 ν ν2 χ2 χ3

0.00 0.009 0.022 0.179 0.310 0.310 0.11 0.06 4.47 21.318 16.92 53.2

Table 4.2: Fast neutron data for a 235U metal system.

N [b−1cm−1] σf [b] σc [µb] v [cm/s] k τ [ns] λf [1/s] α [1/s]

0.05088 2.053 889.7 5.174 ·109 4.47 1.849 5.4050 · 108 1.822 · 109

In the Presence of a Source

To obtain the number distribution in the presence of a source, we begin with Eq. 4.117:

H(z, t|to) =

(
1− (1− z) bo(t|to)

ao(t|to)

)−η
.

After rearranging and defining co(t|to) = bo(t|to)/ao(t|to), where we also note that co < 0 because
bo < 0 for all to < t regardless of criticality, we find:

H(z, t|to) =
[
1− (1− z)co(t|to)

]−η
=
[
1 + |co(t|to)|

]−η [
1− |co(t|to)|

1 + |co(t|to)|
z

]−η
. (4.121)

Upon expanding the bracketed factor of Eq. 4.121, we obtain:

H(z, t|to) =
[
1 + |co(t|to)|

]−η ∞∑
n=0

Γ(η + n)

n!Γ(η)

[ |co(t|to)|
1 + |co(t|to)|

]n
zn, (4.122)

and we can therefore determine the number distribution in the presence of a source by comparing
to the original definition, H(z, t|to) =

∑∞
n=0 Θn(t|to)zn, to find

Θn(t|to) =

[
1 +
|bo(t|to)|
ao(t|to)

]−η
Γ(η + n)

n!Γ(η)

[ |bo(t|to)|
ao(t|to) + |bo(t|to)|

]n
=

1

(1 + b(t))η

[
Γ(η + n)

n!Γ(η)

]
·
[

b(t)

1 + b(t)

]n
,

(4.123)

with n = 0, 1, 2, . . . and we have once again converted the expression in terms of the forward co-
efficients a, b to show the equivalence to Eq. 4.61. With Eqs. 4.120 and 4.123, we have derived
the neutron number distribution for a single chain and in the presence of a source in the Quadratic
Approximation from the backward master equations.
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Figure 4.4: Single chain fast neutron number distributions at different times for a 235U system.
Extinction probabilities are P0(0.1τ) = 0.5420, P0(0.5τ) = 0.5819, P0(τ) = 0.5894, and P0(2τ) =
0.5896.

4.4 Analysis, Discussion, and the Survival Probability
We now consider a system composed of pure 235U metal with a full multiplicity distribution seen in
Table 4.1 for fast neutrons of 14 MeV, where we have included the first three factorial moments. For
such a system ν = 4.47, which is drastically different from the BFM from the previous chapter with
ν = 2 because fast neutrons are prone to cause more neutrons to emerge from an IFE due to the
amount of energy delivered to the nucleus on impact. We include χ2 because we will use it for the
QA calculations and we include χ3 to give the reader a sense of the growth of the factorial moments
of the multiplicity distribution.

From the simple comparison of the full multiplicity distribution ν = 4.47 and the BFM ν = 2,
we should expect the number distributions to vary from the previous chapter’s example in Sec. 3.4.
Figure 4.4 shows the single chain fast neutron number distribution for such a system at different
times. This system is highly supercritical (k = 4.47 because σc is much smaller than σf ) and, as
expected, the chain grows large very quickly which is exemplified by the flattening of the distribution
to accommodate the probabilities for larger n values. By analyzing the long-time asymptotic behav-
ior of the chains, the flattening can be analyzed to obtain useful probabilistic quantities that help
to characterize a system. The most important quantities are known as the survival probability of a
given chain and the probability of initiation. We will now walk through the probabilistic thought
process to formally define these probabilities.

First we note that the single chain number distribution always has the extinction probability,
P0(t), readily separated from the distribution’s analytical expression (see Eqs. 4.57 and 4.120).
Knowing P0 allows us to compute the total probability that the chain has not gone extinct, or has
survived, up to time t which is called the survival probability, PS(t). We do this by noting the
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normalization condition:

1 =

∞∑
n=0

Pn(t) = P0(t) +

∞∑
n=1

Pn(t), (4.124)

and as was just mentioned, PS(t) is simply the probability that the chain has not gone extinct and
is therefore the probability of there being a non-zero number of neutrons in the system at a given
time, i.e.,

PS(t) =

∞∑
n=1

Pn(t). (4.125)

From Eqs. 4.124, 4.125, and 4.57a, a useful expression for the survival probability is obtained:

PS(t) = 1− P0(t) =
a(t)

1 + b(t)
. (4.126)

If we then consider a neutron that is injected into the system at a time to and evaluate the limit
as t → ∞ of Eq. 4.126, we obtain the probability that said neutron will initiate an indefinitely
persistent chain reaction1, i.e. a divergent chain. This probability is given by:

lim
t→∞

PS(t) =

[
e−

∫∞
to

dt′α(t′) +

∫ ∞
to

dt′
χ′2(t′)

2
exp

{
−
∫ t′

to

dt′′α(t′′)

}]−1

, (4.127)

If the system is subcritical, i.e. α < 0, the first term in Eq. 4.127 will diverge and limt→∞ PS(t) = 0,
which tells us P0(∞) = 1 and therefore the chain is guaranteed to extinguish. This is a self-consistent
statement that if the multiplication factor k < 1, then each successive generation of a neutron chain
is on average smaller than the preceding generation, thus in such a scenario one is guaranteed
that chain will eventually diminish. For a supercritical system with α > 0, the first term of Eq.
4.127 decays to zero and the limit of PS takes on some non-zero value, which may be written more
compactly as

lim
t→∞

PS(t) =

[∫ ∞
to

dt′
χ′2(t′)

2
exp

{
−
∫ t′

to

dt′′α(t′′)

}]−1

. (4.128)

If we were to consider time-independent α and χ′2, we have from Eqs. 4.44: a(t) = exp{αt} and
b(t) =

χ′2
2α [exp{αt} − 1], where we have set to = 0. The example 235U system we are considering is

supercritical, and therefore as time progresses we find (with α and χ′2 constant):

lim
t→∞

PS(t) =
2α

χ′2
. (4.129)

Equation 4.129 informs us that after a long period of time, the neutron chain has a probability of
never going extinct given by 2α/χ′2. We will come back to this quantity shortly with an informed
perspective.

Up to now, we have yet to explain the flattening seen in Fig. 4.4 for a supercritical system as
time progresses. We just showed that, in a supercritical system, the chain will not go extinct with
probability 2α/χ′2 (or use Eq. 4.128 for general time-dependence). However, if we evaluate the limit
as t→∞ of any particular number n of the distribution using Eq. 4.57b, we find:

lim
t→∞

Pn(t) = lim
t→∞

a(t)

(1 + b(t))2

[
b(t)

1 + b(t)

]n−1

∼ 1

exp{αt} = 0, for 1 ≤ n <∞. (4.130)

1If we were analyzing the backward equations, we would take the limit as to → −∞, which is to say we inject the
initial neutron in the infinite past and observe the distribution at time t.
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Thus, for any n ∈ [1,∞), the probability of any particular number of neutrons existing within the
system goes to zero- this is why the distribution flattens and continually decreases. Perhaps this
result does not sit well with reader because we have just shown the Pn → 0 as t → ∞ for all n,
while we have also shown that the chain will also continue to grow indefinitely with probability
2α/χ′2. This can be explained by once again considering the normalization condition now evaluated
at t =∞:

1 =

∞∑
n=0

Pn(∞) = P0(∞) + P1(∞) + P2(∞) + · · ·+ P∞(∞). (4.131)

This expression can be simplified by using Eq. 4.130, which tells us P1(∞) = P2(∞) = . . . = 0 and
Eq. 4.128 which provides P0(∞) = 1 − limt→∞ PS(t) (or P0(∞) = 1 − 2α/χ′2 for constant α, χ′2).
Using these in Eq. 4.131 provides an expression for the probability of there being an infinite number
of neutrons in the system at t =∞, P∞(∞):

P∞(∞) =

[∫ ∞
to

dt′
χ′2(t′)

2
exp

{
−
∫ t′

to

dt′′α(t′′)

}]−1

, (4.132)

which is clearly identical to Eq. 4.128. For constant α, χ′2, we obtain the expression:

P∞(∞) =
2α

χ′2
= 2

k − 1

k
· ν

ν2 − ν
. (4.133)

Here we have used α = (k − 1)/τ and χ′2 = λfχ2 with λf = pf/τ = k/(ντ) and χ2 = ν2 − ν. With
Eq. 4.133, we have found that a neutron chain has a non-zero probability of growing in infinitude
and for this reason we call P∞(∞) the probability of divergence or, more commonly, the probability
of initiation (POI) for a single neutron chain. This agrees with our intuition that a supercritical
system will, on average, produce chains that continue to grow with each successive generation. We
note that the POI is not necessarily equal to one, i.e., divergence is not a certainty, and there is a
complementary probability that the chain will eventually extinguish given by P0(∞) = 1−P∞(∞).

We show the POI as a function of k in Fig. 4.5, where we note that when k < 1 the POI is
zero (Eq. 4.133 will give a negative value because α < 0, so be cautious when interpreting this
result). Intuitively, this can be explained because, on average, a generation’s population is less
than the previous generation’s population and therefore a chain is guaranteed to perish on a long
enough timeline in a subcritical system- thus, no divergence. This is also explained mathematically
by recognizing that α ≡ 0 for an exactly critical system and α < 0 for subcritical systems; therefore
a(t) = exp{−|α|t}, b(t) =

χ′2
2|α| [1 − exp{−|α|t}], and the limit of P∞(∞) = limt→∞ PS(t) = 0 (this

also tells us that P0(∞) = 1 and extinction is guaranteed). For the supercitical regime, Fig. 4.5
demonstrates the POI increases approximately linearly for k ∈ [1, 2] and the POI approaches 1 as
k →∞. Figure 4.6 shows the effect of differing criticality on the single chain number distribution at
different instances in time. The POIs for these systems are P∞(∞)|k=0.89 = 0, P∞(∞)|k=0.99 = 0,
and P∞(∞)|k=1.12 = 0.014. For a short period of time, around t = τ (Fig. 4.6a), the distributions
vary only slightly from one another. This is mostly due to the ‘speed limit’ of the neutron interac-
tions, i.e., the neutrons are moving at a finite speed and thus physically the chain can only be so
large. Figure 4.6b shows the distributions at a later time of t = 10τ where we see the subcritical
system of k = 0.89 has chains that will most likely have extinguished while the k = 0.99 system
will have some chains that are more likely to still be propagating. This is an interesting feature for
systems with k / 1, where a chain has the potential to persist for very long time periods before
eventually going extinct.
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Figure 4.5: The single chain POI as a function of system criticality.

(a) P0(τ)|k=0.89 = 0.655, P0(τ)|k=0.99 = 0.654,
P0(τ)|k=1.12 = 0.653.

(b) P0(10τ)|k=0.89 = 0.970, P0(10τ)|k=0.99 = 0.951,
P0(10τ)|k=1.12 = 0.921.

Figure 4.6: Single chain number distributions for varying criticality with corresponding P0 written
underneath each plot.

We next consider the case with a singlet-emitting source in a 235U system with the Quadratic
Approximation applied to the single chain physics and thus Eq. 4.61 may be used (or Eq. 4.123).
Figure 4.7 shows the number distributions due to varying source strengths, given in terms of η =
S/ 1

2χ
′
2, for this supercritical system. As was seen in Fig. 3.5 for the BFM case, the number

distribution undergoes a qualitative change from a monotonically decreasing distribution for η < 1
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Figure 4.7: Neutron number distributions due to singlet-emitting sources of different strengths at
a given time.

to a unimodal distribution when η > 1. As was observed by Prinja & Souto [16], this corresponds
to the system transitioning from a stochastic system towards a more deterministic one. One must
remain wary that η > 1 does not mean the system should be treated deterministically but, rather,
that the source is considered ‘strong’ and produces a number distribution with lower dispersion
about the mean (i.e., the ratio of the variance to the mean decreases)2. A metric for when to treat a
system stochastically or deterministically has been proposed by Méchitoua which involves the total
population of the chain and is given in terms of a population cutoff, C. The cutoff is provides
an estimate for when a chain will almost certainly persist in perpetuity (i.e., diverge) and can be

2To add additional explanation, one may consider the difference of the mode to the mean of the distribution. For
a single chain, the mode M(t) (i.e., the n value that occurs with the greatest frequency and therefore has the highest
probability) is

M(t) =

{
0 if P0(t) > P1(t)

1 if P0(t) < P1(t)

because P1(t) > Pn(t) for any n > 1 at a given time (even if that difference is imperceptibly small) except in the
infinite limit when M(∞) = 0,∞ depending on which probability, P0(∞) or P∞(∞), is larger. In the instant before
t =∞, the distribution will be perfectly flat for n ∈ [1,∞) because P1 = P2 = · · · and therefore the distribution may
have one mode value if P0(t . ∞) > Pn(t . ∞) is the greatest probability or an infinite number of mode values for
each n if Pn(t .∞) > P0(t .∞) (this infinite-mode distribution is only possible if P0(t .∞) ≡ 0). The mean for a
single chain, on the other hand, is n(t) = eαt (we will derive this expression in the next section), which can take on
any real value and is expected to go to 0 for α < 0 or ∞ when α > 0. Thus for a single chain, the mean and mode
are almost always different quantities except in the infinite limit.

For the source distribution, the mean and mode may converge onto one another at any given time which is what
we are witnessing as η transitions to values greater than 1. This is why η is referred to as the shape parameter in the
last section of this chapter. Because of this source strength dependent convergence, the distribution will transition
from the monotonically decreasing single-chain-like distribution (single chain physics dominates the distribution) to
that of a unimodal distribution with M(t) ∼ n(t).
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Table 4.3: Associated data for the CDFs of Fig. 4.8.

η S [1/s] n(t = τ)

0.0001 4.57 · 105 0.0076
1 4.57 · 109 75.9
4 1.83 · 1010 303.5

Figure 4.8: CDFs for several values of η compared against the average-normalized neutron popu-
lation y. Here k = 4.47, τ = 1.85 ns, and t = τ .

approximated by the formula [40]:

C =
10

k − 1
, (4.134)

for k > 1. That is, as k → 1+, the likelihood of a single chain to diverge is less certain (than
for larger k) and one must watch a chain for a longer time to guarantee divergence. As has been
observed in practice by Gregson [31], one may set C = 106 for k = 1.00001, which may be regarded
as the transition from a strongly stochastic to a weakly stochastic population regime for a single
chain.

It is then a question of how large the neutron population must be with a source present, which
is emitting single chains constantly and randomly, that the system becomes deterministic. It was
suggested by Prinja & Souto that this transition can be assessed using the cumulative distribution
function (CDF) about the mean, CDFn(n(t)) = P (n ≤ n(t)) where n(t) is the average population
at time t and P (n ≤ n(t)) is read as the probability of n being less than or equal to n(t). The CDF
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can be explicitly calculated as:

CDFn(n(t)) =

dn(t)e∑
n=0

Pn(t)

=
1

(1 + b(t))ηΓ(η)

dn(t)e∑
n=0

Γ(η + n)

n!

[
b(t)

1 + b(t)

]n (4.135)

where dn(t)e is the ceiling function for n(t) and n(t) = S
α [eαt − 1] for a source (derived in the next

section). Figure 4.8 shows the CDF at a given time for varying source strengths as a function of the
population normalized to the mean, y(t) = n/n(t). We see that a weak source for which η = 0.0001,
the CDF very quickly goes to 1 before y = 1 which means the majority of the neutron population
is less than the mean. For the case of a stronger source with η = 4, the CDF effectively goes from
0 to 1 at exactly y = 1. This tells us that the distribution is highly peaked and centered about the
mean (the variance is low) and the population may be accurately represented by the mean. This
latter characteristic is the hallmark of a deterministic system and thus the larger η is, the more
centered about the mean the distribution is and the more accurate a deterministic model will be in
predicting the behavior of the number distribution. An observation made by Hansen [29] suggests
that we interpret η as being the expected number of persistent fission chains sponsored by a random
but constant neutron source during the first e-folding time. Thus, as η increases, the number of
persistent chains will also increase, pushing the population to larger numbers and decreasing the
dispersion about the mean. On a final note, we mention that Prinja and Souto pointed out the
quantity y = n/n(t) is a similarity variable for the distribution and therefore the CDFs of Fig. 4.8
will look the same regardless of the time.

Next we concern the asymptotic behavior of the distribution to understand the behavior of the
survival probability and the POI in the presence of a source. Consider first the probability of there
being zero neutrons at a given time, P0(t) = (1 + b(t))−η (obtained by setting n = 0 in Eq. 4.61),
and its limit (where we assume α is time-independent):

lim
t→∞

P0(t) = lim
t→∞

[
1 +

χ′2
2α

[
eαt − 1

]]−η
=

{
(1 + bsub(∞))

−η if α < 0

0 if α > 0
(4.136)

where bsub(∞) =
χ′2

2|α| is the limit of b in a subcritical system and bsuper(∞) =∞ is b for a supercritical
system. This tells us that P0(∞) approaches a constant value for subcritical systems while P0(∞)
vanishes for supercritical systems and the eventual extinction of the neutron population is impossible.
Similarly, if we take the limit of the distribution for the remaining finite portion of the population,
i.e. n ∈ [1,∞), we find:

lim
t→∞

Pn(t) =
Γ(η + n)

n!Γ(η)
lim
t→∞

1

(1 + b(t))η
· b(t)

1 + b(t)
=


1

(1+bsub(∞))η
Γ(η+n)
n!Γ(η) ·

bsub(∞)
1+bsub(∞) if α < 0

0 if α > 0

(4.137)
Thus, we expect there to be a steady-state distribution for subcritical systems given by the top line
of Eq. 4.137 (as opposed to the single chain subcritical case where the only possibility is a single
non-zero probability at n = 0 with P0(∞) = 1). For a supercritical system, we once again find
the Pn(∞) for all n goes to zero. By evoking the normalization condition, we find the POI for a
supercritical system with a constant source:

P∞(∞) = 1, (4.138)
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(a) (b)

Figure 4.9: Approach to steady-state for a subcritical system (k = 0.90) for (a) a weak source
(η = 0.0001), and (b) a strong source (η = 4).

which tells us that a divergent chain is guaranteed to eventually emerge in a supercritical system.
On a final note, we consider a subcritical system of k = 0.90 at varying times for a weak source

of η = 0.0001 (S = 4.5 · 105 1/s), Fig. 4.9a, and a strong source of η = 4 ((S = 1.8 · 1010 1/s)),
Fig. 4.9b. Using the analysis for the single chain propagation, we know that the chains produced by
either source eventually die off because k < 1. Although every chain is guaranteed to disappear, the
distribution itself reaches a steady-state distribution and the number distribution becomes stationary
(note the lines for t = 50τ and t = 100τ lie atop one another).

4.5 Moment Equations and the NMESA
Equations for the moments of the distribution are utilized for a myriad of applications, including, but
not limited to: characterizing the number distribution for instances where the QA is not applicable;
for fitting the distribution to another known distribution based on the calculated moments; or even
for benchmarking codes. For illustrative purposes, we will show the general process for obtaining
equations satisfied by the moments of the number distribution under investigation for the forward
formulation, but any and all techniques presented are applicable in the backward formulation as
well. We will demonstrate the NMESA by showing how to obtain ODEs satisfied by the moments
of the distribution in Sec. 4.5.1 and then show how to use those moments to fit a distribution in
Sec. 4.5.2.

4.5.1 Obtaining Moment Equations
To obtain the moments for the neutron number distribution from the forward master equation, Eq.
4.16, one would think to first apply the definition of the kth moment of the population distribution,

nk(t) =

∞∑
m=0

mkPm(t) (4.139)
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by multiplying by mk and summing over all m. This methodology, albeit acceptable, is cumbersome
as it would require one to perform the necessary transformations of the equation for every moment
desired. Instead, by recognizing the similarity of Eq. 4.139 to the derivative of the PGF with respect
to z evaluated at z = 1,

∂kG(z, t)

∂zk

∣∣∣∣∣
z=1

=

∞∑
n=0

n(n− 1) · · · (n− k + 1)zn−kPn(t)

∣∣∣∣∣
z=1

=n(n− 1) · · · (n− k + 1)(t), (4.140)

we may systematically obtain the factorial moments to the distribution. In practice, this is done by
taking derivatives with respect to z of the PGF PDE, Eq. 4.30, evaluating at z = 1, and unfolding
the factorial moment expression to obtain nk(t).

To begin, we state the forward PGF PDE:

τ
∂G

∂t
=

[
− z + p` + pfgf (z)

]
∂G

∂z
+ Sτ

[
g
S
(z)− 1

]
G(z, t), (4.141)

where we have written the reaction rates in terms of the average neutron lifetime, τ , and we have
combined the capture and leakage into a single loss probability, p` = 1−pf . By taking the derivative
with respect to z of Eq. 4.141, we find:

τ
∂2G

∂z ∂t
=

[
− z + p` + pfgf (z)

]
∂2G

∂z2
+

[
− 1 + pf

dg
f

dz

]
∂G

∂z

+ Sτ
[
g
S
(z)− 1

]∂G
∂z

+ Sτ
dg

S

dz
G,

(4.142)

and upon evaluating at z = 1, we arrive at a linear first-order ordinary differential equation for the
first moment of the neutron population:

dn(t)

dt
= α(t)n(t) + S(t)ν

S
, (4.143)

which is the well-known point-reactor kinetic equation without delayed neutrons (as we mentioned
in the introduction, master equations are called as such because all other equations describing the
system can be derived from them- case-in-point Eq. 4.143). In Eq. 4.143, we are using α =
(pfνf − 1)/τ = (k − 1)/τ and we have recognized dgx/ dz|z=1 = νx provides the average of the
specific multiplicity distribution, from which we may write the average of the factorial moments as

dkgx(z)

dzk

∣∣∣∣∣
z=1

= νx(νx − 1) · · · (νx − k + 1)

= (νx)k
=χk

(4.144)

where we are utilizing Pochhammer’s notation for the falling factorial functions on the second line of
the above and recall Eq. 4.38 for the last line. Equation 4.143 can be solved for using the integrating
factor technique to yield:

n(t) = n(to)e
∫ t
to

dt′α(t′) +

∫ t

to

dt′S(t′)νS exp

{∫ t

t′
dt′′α(t′′)

}
, (4.145)
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which takes the form for constant α and S:

n(t) = n(0)eα(t−to) +
Sν

S

α

[
eα(t−to) − 1

]
. (4.146)

For the single chain case, n(0) = 1 and S = 0, while for the source case, n(0) = 0, thus we have:

Single Chain: n(t) = eα(t−to) (4.147a)

Source: n(t) =
Sν

S

α

[
eα(t−to) − 1

]
. (4.147b)

We may obtain equations for the higher moments by taking successively higher derivatives of
G. For the second moment, n2(t), we have the linear first-order ODE that is coupled to the first
moment:

dn2(t)

dt
− 2α(t)n2(t) =

dn(t)

dt
+ [χ′2(t)− 2α(t) + 2S(t)ν

S
]n(t) + S(t)(ν

S
)2. (4.148)

We see the RHS of the above is assumedly completely known as it is a function of n(t) and system
parameters (λf , S). This ODE can be solved numerically, but we show how to obtain analytical
solutions for constant system parameters. For the second moment, we find the solution using the
integrating factor technique:

n2(t) =n2(0)e2αt +

∫ t

0

dt′
dn(t′)

dt′
e−2α(t′−t) +

Sν
S

α

[
e2αt − 1

]
+
[
λf (νf )2 − 2α+ 2Sν

S

] ∫ t

0

dt′n(t′)e−2α(t′−t).

(4.149)

This process must be applied as many times as there are desired moments. With some effort, it can
be shown that for constant system parameters α and S, the kth moment is:

nk(t) = nk(0)ekαt +
S(ν

S
)k

kα

[
ekαt − 1

]
+

k−1∑
j=1

{
− s1(k, j)

[
nj(t)− nj(0)ekαt

]

+ c
(k)
j

∫ t

0

dt′nj(t′)e−kα(t′−t)
}
,

(4.150)

where the coefficient is defined as:

c
(k)
j =

k−j∑
i=1

s1(k − i, j)
{(

k

i+ 1

)
(νf )i+1λf +

(
k

i

)
(ν
S
)iS

}
, (4.151)

and s1 is the Signed Stirling Number of the First Kind and
(
k
j

)
is the binomial coefficient. Thus, to

find the kth moment of a number distribution, one must determine the k − 1 lower moments.

4.5.2 Fitting a Distribution with the Moments
The primary reason for fitting a distribution using the moments is to circumvent the AMESA either
because an analytical solution is unobtainable or because the NMESA is relatively easy to implement.
Typically, the moment equations are not analytically solvable and must be solved numerically using
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a discretization scheme. For brevity, we will avoid a conversation on the efficacy and performance
of one numerical method over another, and will simply mention that we use MATLAB’s intrinsic
ODE solver, ode45, to numerically solve the system of ODEs Eqs. 4.143 and 4.148.

We will focus on constructing the neutron number distribution with a constant singlet-emitting
source present, but we will also provide a single-chain expression for completeness. As proposed
by Harris [20], and later verified and validated by Bell [9], the number distribution in the presence
of a source asymptotically follows a gamma distribution when the neutron population has grown
reasonably large (n(t)� 1) and after several lifetimes (t� 1/α- see footnote3). Bell found analytical
solutions for the single chain and source distributions by assuming n was large enough within the
system that it could be treated as a continuous variable. Thus he made the transition from a discrete
probability distribution function to a probability density function: Pn(t)→ P (n, t) dn. From there,
he applied the inverse Laplace transform on G (Eqs. 4.47 and 4.53) and found the single chain and
the source distributions:

Single Chain: P (n, t) = (1− P∞(∞)) δ(n) +
[P∞(∞)]

2

n(t)
exp

{
−P∞(∞)

n(t)
n

}
(4.152a)

Source: P (n, t) =

[
ηn

n(t)

]η−1
η

Γ(η)n(t)
exp

{
− ηn

n(t)

}
(4.152b)

where δ(n) is the Dirac delta function and we note that P∞(∞) in Eq. 4.152a is for a single chain
(use Eq. 4.132), while η = 2S/χ′2 is Bell’s parameter, n(t) is determined from Eq. 4.145 (single
chain, set S = 0 and n(to) = 1 and for the source case set n(to) = 0), and Γ(·) is the gamma function.
We note that the Prinja-Souto distributions given by Eqs. 4.57 (for the single chain) and 4.61 (for
the source) are generalizations of Bell’s distributions because they enforced n to remain a discrete
variable. We wish to remind the reader that, when using Eqs. 4.152, α(t) can be time-dependent
for both distributions while χ′2 can be time-dependent for the single chain case but must be held
constant in the source case.

Henceforth, our discussion will concern only the source case. From this, we will follow suit
with Harris and assume we may use a generic gamma distribution, f(n; θ, β), to model the number
distribution, where n is a gamma-distributed random variable, θ is the shape parameter, and β is
the rate parameter:

f(n; θ, β) =
βθ

Γ(θ)
nθ−1e−βn. (4.153)

The mean and variance of the gamma distribution, µΓ and VΓ, respectively, are given by:

µΓ =
θ

β
= n(t) (4.154a)

VΓ =
θ

β2
=

[n(t)]2

η
(4.154b)

Comparing Eq. 4.153 with Eq. 4.152b, we see that θ = η and β = η/n(t) to get the distributions
to exactly match. However, we might be dealing with a system where the Quadratic Approxima-
tion does not hold or is not accurate whence Bell’s distribution Eq. 4.152b and the Prinja-Souto
distribution Eq. 4.61 fail. The primary regimes where these solutions fail are when the Quadratic
Approximation is a poor approximation. This occurs for subcritical systems and for early times of

3Note that α = (k−1)/τ , which can be regarded as the excess neutron multiplication per neutron lifetime. Then the
criteria t� 1/α is a requirement that enough time has passed such that the population is behaving in an asymptotic
manner. The value of this criteria is system-dependent and is demonstrated below in Fig. 4.10.
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supercritical systems for which the neutron population is still relatively small or when χ′2 is a strong
function of time. We may then use the the generic gamma distribution Eq. 4.153 and calculate
the two parameters θ and β to find an additional distribution. This will still be an approximation
because the gamma distribution is not the exact representation of the neutron number distribution
(case-in-point: the Prinja-Souto distribution is not a gamma distribution and it is more accurate
than Bell’s gamma distribution).

Proceeding, we may calculate the mean and variance using the first and second moment equations,
Eqs. 4.143 and 4.148. These moment equations are not restricted by the QA and should provide
more accurate results, numerical error notwithstanding, because we may use the entire multiplicity
distribution as well as time-dependent system parameters (i.e., α(t) and S(t)). Thus, upon numerical
calculation of the first and second moment, n

N
(t) and n2

N
(t), where we use the subscript N to denote

‘numerical’, we may then calculate the true mean and variance of the neutron number distribution:

µ
N

(t) =n
N

(t) (4.155a)

V
N

(t) =n2
N

(t)−
[
n
N

(t)
]2
. (4.155b)

We relate this to the generic gamma distribution’s parameters by setting µΓ = µ
N

and VΓ = V
N

to
find the relations:

θ =n
N

(t)β =

[
µ
N

(t)
]2

V
N

(t)
(4.156a)

β =
µ
N

(t)

V
N

(t)
. (4.156b)

Finally, we make the observation that θ = η and β = η/n(t) and we are therefore tasked with
calculating but a single fitting parameter, ηfit for Bell’s distribution:

ηfit(t) = θ =

[
µ
N

(t)
]2

V
N

(t)
. (4.157)

The solution process is as follows:

1. calculate n
N

(t) and n2
N

(t) from Eqs. 4.143 and 4.148,

2. calculate ηfit(t) from Eq. 4.157 (alternatively calculate θ, β from Eqs. 4.156),

3. calculate the fitted distribution using n
N

(t) and ηfit(t) in Eq. 4.152b (alternatively use θ, β in
Eq. 4.153).

4.5.3 Comparing Source Distributions
We now compare distributions to gain an understanding of how the Bell and Prinja-Souto distribu-
tions are related and then demonstrate the gamma distribution fitting process as outlined above.
We use MATLAB’s intrinsic ODE solver, ode45 to numerically solve the moment ODEs Eqs. 4.143
and 4.148 to complete steps 1 and 2 in the above list. The final step is to simply use those computed
moments and parameters in Eq. 4.152b to find a distribution that (hopefully) resembles the neutron
number distribution.

We first compare the Prinja-Souto distribution to the Bell distribution for subcritical and super-
critical systems with a source present. Figure 4.10a shows a subcritical system with k = 0.8788; we
see that both distributions asymptotically settle by 100 neutron lifetimes, but they do not converge
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(a) (b)

Figure 4.10: Comparison of the Bell and Prinja-Souto distributions for (a) a subcritical system
and (b) a supercritical system with a source present. Solid lines are the Bell distribution and the
discrete points, × and ◦, are the Prinja-Souto distribution.

Table 4.4: Initial fast neutron data for a 235U metal system with time-dependent k and α.

N [b−1cm−1] σf [b] σc [b] v [cm/s] τ [ns] χ′2 [1/s]

0.05088 2.053 8.109 5.174 ·109 0.374 9.144 · 109

to tf ko kf αo [1/s] γ [ns]

0 50τ 0.5 1.1 −1.34 · 109 2.41

onto one another. Thus, the distributions for subcritical systems do not share an asymptotic form.
This tells us that Bell’s distribution should not be applied to subcritical systems for k < 0.9, except
to determine a very crude estimate of the number distribution. However, the supercritical system
of Fig. 4.10b, with k = 1.0035, shows that the discrete and continuous distributions do indeed
converge to a common form. Then it can be said that Bell’s distribution is applicable for marginally
supercritical systems after several decades of neutron lifetimes. This is an important point to keep
in mind when attempting to fit a gamma distribution using the moments because it might not be
representative of the actual number distribution. A researcher must remain skeptical of results, es-
pecially when making approximations in the realm of stochastic neutronics. We note in passing that
the best benchmark to obtain number distributions is by use of Monte Carlo methods which tend
to be very time-consuming and computationally expensive calculations, but the actual distribution
is more than likely guaranteed through such methods. We will learn about Monte Carlo methods in
a later primer volume.

We now turn our focus to solving the moment equations for a system with a constant singlet-
emitting source and we allow for a linearly varying criticality k(t) (and thus linear α(t)). For a
system with an initial multiplication factor ko at time to that is then subject to a linear change over
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(a) (b)

Figure 4.11: (a) Moments and (b) number distributions at differing times of the system evolution
for a system with a linearly varying α(t) and a weak source of S = 105 1/s (η = 2.1872 · 10−5). In
(b), the dots correspond to the fitted distribution, solid lines are the Prinja-Souto distribution (Eq.
4.61), and dashed lines are Bell’s distribution (Eq. 4.152b).

time, we have:

k(t) = ko +
∆k

∆t
(t− to), (4.158)

where ∆k = kf − ko, ∆t = tf − to, and kf is the criticality at some prescribed final time tf . We
additionally have

α(t) =
k(t)− 1

τ
=

∆k(t− to)
τ∆t

+ αo, (4.159)

where αo = (ko − 1)/τ and we are assuming that τ is constant. Equations 4.44 may be computed:

a(t) = exp

{
t2 − 2tto + t2o

4γ2
+ αo(t− to)

}
(4.160a)

b(t) = ca(t) [erf (γα(t))− erf (γαo)] (4.160b)

c =
χ′2
2

√
π γe(γαo)2 (4.160c)

γ =

√
τ

2

∆t

∆k
(4.160d)

where we have assumed χ′2 is constant (therefore λf is constant) and erf(·) is the error function.
From this, we may compute the single chain survival probability PS(t) = a(t)/(1 + b(t)) and the
single chain POI is then (using Eq. 4.132):

P∞(∞) =
1

c [1− erf (γαo)]
. (4.161)

Consider now the 235U system from before using fast neutron multiplicity data from Table 4.1
as well as the data in Table 4.4 for the initial system data. The system begins at a very low
subcritical state of ko = 0.5 and reaches a value of kf = 1.1 at a time of tf = 50τ . Thus, using Eq.
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(a) (b)

Figure 4.12: Per Fig. 4.11, but for a strong source of S = 1010 1/s (η = 2.1872).

4.158, the system is subcritical until about t ≈ 41.667τ , at which time it becomes increasingly more
supercritical. We show in Fig. 4.11a the numerically computed moment ODEs for the case in which
the system possesses a weak neutron source of S = 105 1/s (thus η = 2.1872 · 10−5) over the range
of 50τ . The mean is increasing in the subcritical time range t < 41.7τ because the multiplication
is increasing, thus the mean will be higher for higher k even in steady-state. Figure 4.11b provides
the number distribution at different times of this evolutionary process as calculated by the gamma
distribution fitting method (dots), the analytical Prinja-Souto distribution (solid lines) using Eq.
4.61, and Bell’s distribution (dashed lines) using Eq. 4.152b. Note that we used the numerically
calculated n(t) in Bell’s distribution (and, just to be clear, we use η = 2S/χ′2, not Eq. 4.157). All
three distributions agree by t = 50τ , where we note that the fitted distribution better approximates
the Prinja-Souto distribution than the Bell distribution does at t = τ . This suggests that one may
be more inclined to use the fitted distribution over Bell’s distribution to better model the number
distribution at early times.

Next, we increase the source strength by 5 orders of magnitude to S = 1010 1/s and display the
results in Figs. 4.12b. We see the moments have the same shape as in the weak source case, but are,
as expected, drastically larger in magnitude. Figure 4.12 shows the three number distributions once
again where the distributions are now unimodal due to η > 1. As with Fig. 4.11b, we see the fitted
distribution agrees with the Prinja-Souto distribution earlier by around t = 10τ and all distributions
agree by t = 50τ . Therefore a main result from this study is that the gamma distribution fitting
works well for strong and weak sources (i.e., is well-suited for both the monotonically decreasing
form as well as the unimodal form) in both sub- and supercritical systems after only a few neutron
lifetimes (this is because the distributions agree for t = 10τ when the system is still quite subcritical
with k(10τ) = 0.62). We again wish to express caution in interpreting the overall accuracy and
precision of these results because both the Bell and Prinja-Souto distributions rely on the Quadratic
Approximation and are therefore approximate distributions with specific domains of validity. We
intentionally avoided a conversation about Monte Carlo methods, which tend to provide the most
accurate and general results (given appropriate statistical convergence and proper simulation of the
physics), to maintain an analytical focus to this primer and this will be a topic for the next volume.

A final observation concerns the mean between the two different source strengths of Figs.
4.11a and 4.12a. Note the similarity between final mean values, nweak(50τ) = 10−3 neutrons and
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nstrong(50τ) = 102 neutrons, and the source magnitudes Sweak = 105 1/s and Sstrong = 1010 1/s.
The difference in magnitude between both quantities, 105, is the same. This is not a coincidence
as this holds for all time in this problem and indeed for all problems as it is a scaling symmetry
commonly exploited in the literature and in practice. This scaling can be seen in Eq. 4.145, or more
clearly in Eq. 4.147b, where the solution n(t) is directly proportional to the source strength. This
brings us to our final point, concerning the approximation of singlet-emitting sources. As can be seen
in Eq. 4.145 (or 4.147b), the solution is actually directly proportional to the product SνS , where
νS = 1 for a singlet-emitting source. We can therefore increase S by a factor of νS to determine
the mean at a given time rather than re-do the calculation at every time-step. Similarly, we may
alter Bell’s parameter η = 2S/χ′2 by a factor νS to accordingly adjust the number distribution for
non-singlet-emitting sources.
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Chapter 5

Conclusions

This primer was motivated towards teaching the fundamental principles of stochastic neutronics and
to use those principles to model systems of interest. We demonstrated the Master Equation Solution
Algorithm in chapters 2, 3, and 4 for both the Forward Formulation and the Backward Formulation.
For chapters 2 and 3, we obtained exact analytical solutions for the Radioactive Decay Model and
the Binary Fission Model without capture, respectively, due to the simplicity of the models. Chapter
4, which concerned a full neutron multiplicity distribution for the induced fission and spontaneous
fission, required the application of the Quadratic Approximation to obtain an analytical solution
for the single chain number distribution and we further required constant χ′2 and singlet-emitting
sources to obtain an analytical expression for the source number distribution. We hope that the
reader emerges at the end of their reading this primer with the core concepts understood insofar
that they may go on to derive and solve their own Master equations in their fields of study.

Though there are many places to turn to next, we recommend reading the many-times mentioned
papers by Bell [9] and Prinja & Souto [16] for their own commentary, derivations, and insights. These
two papers utilize the forward formulation while Bell’s paper includes delayed neutrons, a detailed
analysis of the characteristic curves of G and z, and a derivation of the distributions that are his
namesake. The Prinja-Souto distribution does not have delayed neutrons but it succeeds in its goal
of deriving the generalized number distributions that we call to throughout Chapter 4. They provide
the analysis we used to understand the asymptotic distributions and they provide proof that their
distributions converge to Bell’s distributions. The reader is referred to Prinja’s paper [18] for the
zero-dimensional backward formulation to the stochastic neutronics equations seen in Chapter 4
with additional discussion on the survival probability.

A list of other papers with generalizations is provided now for the committed reader, and we will
plan on addressing many of these generalizations in later primer volumes. An additional resource
includes Pázsit and Pál’s text [7] to experience the many applications and generalizations of the
models we discussed herein. For generalizations of the stochastic model discussed herein, Pàl [22, 23],
Bell [21], and Lewins [24] provide the backward formulation with space, angle, and energy effects,
while the forward formulation with phase-space is provided by Stacey [25]. Delayed neutrons are
considered in Bell [9] (although no analytical solution is found,) and Muñoz-Cobo provides phase-
space equations with delayed neutrons [34]. Additional particle species are incorporated in works
such as photon-neutron coupling and counting statistics [33, 35, 36, 6, 37], fission numbers [26],
and fission energy deposition [27, 28]. To gain insight on experimental results and understanding
of stochastic neutronics, the reader is referred to a few useful documents here: [29, 30, 31, 32],
though there are many others. We mention these generalizations of the stochastic theory of neutron
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transport to provide scope, context, applications, and once again, to signify that this work is only the
first step within the problem space of stochastic neutronics. In future volumes, we will be applying
generalizations to the models, such as space- and angle-dependence and providing more examples to
help cultivate a deeper understanding of stochastic neutron populations within multiplying systems.
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